Pamela S. Howard

Learn More
Proper growth and development require the orderly synthesis and deposition of individual components of the extracellular matrix (ECM) into well ordered networks. Once formed, the ECM maintains tissue structure and houses resident cells. One ECM component, (beta)ig-h3, is a highly conserved transforming growth factor-beta-inducible protein that has been(More)
Immunohistochemistry using monoclonal and polyclonal antibodies to extracellular matrix proteins is a highly sensitive tool for the characterization of matrix components. For the first time in the normal and noncompliant human bladder we have used antibodies to collagen types I, III and IV, and elastin to provide morphological correlation with mechanical(More)
This report documents the growth and culture characteristics of human and fetal bovine bladder smooth muscle cells in vitro. Bladder smooth muscle cell strains have been identified by their spindle shaped morphology, noncontact inhibited growth characteristics and the expression of smooth muscle cell specific alpha-actin. Extracellular matrix protein(More)
The extracellular matrix (ECM) plays an essential role in bladder structure and function. In this study, expression of beta ig-h3, a recently identified extracellular matrix protein, was investigated in human bladder tissue, and human bladder smooth-muscle (SMC) and fibroblast cells in vitro. SMCs secreted greater than three times the level of this protein(More)
Bronchial smooth muscle cells play a central role in normal lung physiology by controlling airway tone. In addition, airway smooth muscle hyperplasia and hypertrophy are important factors in the pathophysiology of asthma. In this study, expression of betaig-h3, a recently identified component of the extracellular matrix (ECM), was investigated in primary(More)
The function of the urinary bladder is to store urine at low pressure and expel it periodically. To accomplish this, it must have the appropriate structural properties to accommodate slow but continuous volume changes. While much is presently known about the functional measurements of compliance, relatively little is known about the structural basis of(More)
Periodontal ligament fibroblasts (PDLFs) are a heterogeneous population of cells that are involved in the normal maintenance, repair and regeneration of both the ligament and adjacent hard tissues. Additionally, the ability of these cells to respond to mechanical stimulation suggests that they have a central role in mediating the osseous remodeling that(More)
PURPOSE Fibrosis of bladder tissue is characterized by an abnormal deposition of connective tissue within different layers of the bladder wall, resulting in a low volume, high pressure vesical which may ultimately contribute to renal scarring and failure. These bladders are functionally referred to as "non-compliant" and may result from different(More)
Human periodontal ligament fibroblasts were subjected to 10% cyclic equibiaxial tensional and compressive forces in vitro. Media supernatants were analyzed for changes in total protein, extracellular matrix proteins type I collagen and fibronectin, as well as MMP expression by gelatin zymography and Western blot. RNA analyses for changes in collagen, MMP-2,(More)
Using biochemical and immunohistochemical techniques, we have investigated P-cadherin, beta-catenin, c-src and c-met protein expression, and phosphorylation of beta-catenin in a rat model of tongue cancer induced with 4-nitroquinoline 1-oxide. Six-week-old male Sprague-Dawley rats were given either normal drinking water (controls) or 50 ppm 4NQO solution as(More)