Pamela K. Douglas

Learn More
In the multimodal neuroimaging framework, data on a single subject are collected from inherently different sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information each source provides is not independent; a subset of features from each modality maps to one or more common latent dimensions, which can be(More)
Machine learning (ML) has become a popular tool for mining functional neuroimaging data, and there are now hopes of performing such analyses efficiently in real-time. Towards this goal, we compared accuracy of six different ML algorithms applied to neuroimaging data of persons engaged in a bivariate task, asserting their belief or disbelief of a variety of(More)
Attention deficit hyperactivity disorder (ADHD) currently is diagnosed in children by clinicians via subjective ADHD-specific behavioral instruments and by reports from the parents and teachers. Considering its high prevalence and large economic and societal costs, a quantitative tool that aids in diagnosis by characterizing underlying neurobiology would be(More)
With the recent approval by the Food and Drug Administration (FDA) of Deep Brain Stimulation (DBS) for Parkinson's Disease, dystonia and obsessive compulsive disorder (OCD), vagus nerve stimulation (VNS) for epilepsy and depression, and repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression, neuromodulation has become(More)
Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the(More)
Independent component analysis (ICA) is a popular method for the analysis of functional magnetic resonance imaging (fMRI) signals that is capable of revealing connected brain systems of functional significance. To be computationally tractable, estimating the independent components (ICs) inevitably requires one or more dimension reduction steps. Whereas most(More)
Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus, potentially before structural MRI, that does not require rare and transient epileptiform discharges or seizures on EEG. The visual interpretation of iPET is challenging and requires years of epilepsy-specific expertise. We have developed an automated computer-aided diagnostic(More)
Interictal electroencephalography (EEG) has clinically meaningful limitations in its sensitivity and specificity in the diagnosis of epilepsy because of its dependence on the occurrence of epileptiform discharges. We have developed a computer-aided diagnostic (CAD) tool that operates on the absolute spectral energy of the routine EEG and has both(More)
Machine Learning (ML) methods applied to real-time functional MRI (rt-fMRI) data provide the ability to predict and detect online any changes in cognitive states. Applications based on rt-fMRI require appropriate selection of features, preprocessing routines, and models in order to both be practical to implement and deliver interpretable results. In the(More)
Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge(More)