Pamela J Weathers

Learn More
The polypeptide contained in the cyanophycin granule, a characteristic cyanobacterial subcellular inclusion, is shown to be a highly branched structure consisting of a polyaspartic acid core to which arginyl residues are attached at each free carboxyl group of the polyaspartic acid. The evidence supporting such a model includes: (i) The resistance of the(More)
The potent antimalarial sesquiterpene lactone, artemisinin, is produced in low quantities by the plant Artemisia annua L. The source and regulation of the isopentenyl diphosphate (IPP) used in the biosynthesis of artemisinin has not been completely characterized. Terpenoid biosynthesis occurs in plants via two IPP-generating pathways: the mevalonate pathway(More)
Transformed root cultures of several strains of Artemisia annua were obtained by infection with Agrobacterium rhizogenes ATCC 15834. Production of artemisinin, measured by HPLC, ranged from 0–0.42 % of dry weight (DW) in 10 different clones. Artemistene, artemisinic acid, and arteannuin B were also measured. Comparisons to literature reports suggest that(More)
The relationship between the transition to budding and flowering in Artemisia annua and the production of the antimalarial sesquiterpene, artemisinin (AN), the dynamics of artemisinic metabolite changes, AN-related transcriptional changes, and plant and trichome developmental changes were measured. Maximum production of AN occurs during full flower stage(More)
In vitro cultures are being considered as an alternative to agricultural processes for producing valuable secondary metabolites. Most efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Bioreactors used to culture hairy roots can be roughly divided into three types: liquid-phase, gas-phase,(More)
Artemisinin (AN), a potent antimalarial drug that has been used for centuries as a folk remedy in China, is an effective treatment against quinine-resistant strains of Plasmodium. It can be produced through the in vitro culture of genetically transformed (hairy) roots. The effect of gibberellic acid (GA3) on the growth and secondary metabolite production of(More)
We analyzed four factors (phosphate and nitrate salts, sucrose, and culture inoculum age), simultaneously at three levels using a fractional factorial design method to determine the most suitable conditions for maximizing both root biomass and terpenoid production in transformed Artemisia annua root cultures. Optimal growth conditions were determined to be:(More)
Transformed root cultures of Artemisia annua grown in autoclaved medium show large variations in biomass and artemisinin production regardless of the culture conditions or clonal type. However, using filter-sterilized sugars singly or in combination while holding the carbon level in the medium constant resulted in an unexpected variability in biomass(More)
Artemisinin is a highly effective sesquiterpene lactone therapeutic produced in the plant, Artemisia annua. Despite its efficacy against malaria and many other infectious diseases and neoplasms, the drug is in short supply mainly because the plant produces low levels of the compound. This review updates the current understanding of artemisinin biosynthesis(More)