Pamela J. Baker

Learn More
In this study, we used a mouse model to examine the role of the adaptive immune response in alveolar bone loss induced by oral infection with the human gram-negative anaerobic bacterium Porphyromonas gingivalis. Severe combined immunodeficient mice, which lack B and T lymphocytes, exhibited considerably less bone loss than did immunocompetent mice after(More)
The suitability of a mouse model for host response in the induction of alveolar bone loss by Porphyromonas gingivalis was explored. The mouths of immunocompetent and severe combined immunodeficient (SCID) mice were infected with P. gingivalis ATCC 53977. P. gingivalis was not isolated from the mouths of these mice before infection, but was present at least(More)
BACKGROUND The hyperthermophile Pyrococcus furiosus is one of the most thermostable organisms known, with an optimum growth temperature of 100 degrees C. The proteins from this organism display extreme thermostability. We have undertaken the structure determination of glutamate dehydrogenase from P. furiosus in order to gain further insights into the(More)
The three-dimensional crystal structure of the NAD(+)-linked glutamate dehydrogenase from Clostridium symbiosum has been solved to 1.96 A resolution by a combination of isomorphous replacement and molecular averaging and refined to a conventional crystallographic R factor of 0.227. Each subunit in this multimeric enzyme is organised into two domains(More)
IL-17 and its receptor are founding members of a novel family of inflammatory cytokines. IL-17 plays a pathogenic role in rheumatoid arthritis (RA)-associated bone destruction. However, IL-17 is also an important regulator of host defense through granulopoiesis and neutrophil trafficking. Therefore, the role of IL-17 in pathogen-initiated bone loss was not(More)
Peptide deformylase (PDF) is an essential bacterial metalloenzyme which deformylates the N-formylmethionine of newly synthesized polypeptides and as such represents a novel target for antibacterial chemotherapy. To identify novel PDF inhibitors, we screened a metalloenzyme inhibitor library and identified an N-formyl-hydroxylamine derivative, BB-3497, and a(More)
The structure of the hexameric L-alanine dehydrogenase from Phormidium lapideum reveals that the subunit is constructed from two domains, each having the common dinucleotide binding fold. Despite there being no sequence similarity, the fold of alanine dehydrogenase is closely related to that of the family of D-2-hydroxyacid dehydrogenases, with a similar(More)
The Escherichia coli DNA binding protein RuvA acts in concert with the helicase RuvB to drive branch migration of Holliday intermediates during recombination and DNA repair. The atomic structure of RuvA was determined at a resolution of 1.9 angstroms. Four monomers of RuvA are related by fourfold symmetry in a manner reminiscent of a four-petaled flower.(More)
BACKGROUND Glutamate, phenylalanine and leucine dehydrogenases catalyze the NAD(P)(+)-linked oxidative deamination of L-amino acids to the corresponding 2-oxoacids, and sequence homology between these enzymes clearly indicates the existence of an enzyme superfamily related by divergent evolution. We have undertaken structural studies on a number of members(More)
In bacteria, the regulation of gene expression in response to changes in cell density is called quorum sensing. The autoinducer-2 production protein LuxS, is involved in a novel quorum-sensing system and is thought to catalyse the degradation of S-ribosylhomocysteine to homocysteine and the autoinducer molecule 4,5-dihydroxy-2,3-pentadione. The crystal(More)