Pamela G. Murray

Learn More
The NeuroScope is a new device which produces a continuous real-time index of cardiac parasympathetic activity (the CIPA) and accurately measures RR intervals. The reproducibility of the CIPA has not yet been assessed. This study was designed to assess the reproducibility of a 5 minute recording of the CIPA using the NeuroScope and compare it with that of(More)
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of(More)
(Affiliations can be found after the references in the electronic version) ABSTRACT Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and(More)
We present a LIGO search for short-duration gravitational waves (GWs) associated with soft gamma ray repeater (SGR) bursts. This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from(More)
The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. Finding no evidence to support the detection of GWs, we present 90% confidence(More)
This paper demonstrates a method for using an autonomous underwater vehicle to measure the velocity of a deep-sea hydrothermal plume. Based on a system identification experiment conducted in the actual operating environment, we extracted a dynamic model of the vehicle's vertical response, then used that model to infer the vertical water velocity of rising(More)
We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1100 Hz and with the frequency's time derivative in the range -5 x 10{-9}-0 Hz s{-1}. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of(More)
  • 1