Pamela Chelme-Ayala

Learn More
The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated(More)
Oil sands process-affected water (OSPW) is a complex mixture of organic and inorganic contaminants, and suspended solids, generated by the oil sands industry during the bitumen extraction process. OSPW contains a large number of structurally diverse organic compounds, and due to variability of the water quality of different OSPW matrices, there is a need to(More)
Oil sands process-affected water (OSPW) is the water contained in tailings impoundment structures in oil sands operations. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. In this study, ozonation followed by biodegradation was used to remediate OSPW. The impacts of the ozone process evolution on the(More)
Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance(More)
The presence of naphthenic acids (NAs) and other organic constituents in oil sands process-affected water (OSPW) stored in tailings ponds, poses a serious environmental threat due to their potential toxicity to aquatic organisms and wild life. In this work, four fractions of OSPW, extracted by dichloromethane at different pHs, were ozonated to determine the(More)
This study evaluated the reaction kinetics and degradation mechanism of the pesticides bromoxynil and trifluralin during conventional ozonation. The second-order rate constants for the direct molecular ozone and hydroxyl radical reactions with bromoxynil and trifluralin were determined using a rapid-scan stopped-flow spectrophotometry, competition kinetics,(More)
Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with(More)
The degradation of two pesticides, bromoxynil and trifluralin, was investigated in ultrapure and natural water solutions under ultraviolet (UV) light and a combination of UV and hydrogen peroxide (H(2)O(2)). The effect of pH on the photooxidation of the pesticides was also studied. The results indicated that under direct photolysis with monochromatic light(More)
In this study, liquid swine manure was treated by physico-chemical treatment, including coagulation, flocculation, and sedimentation followed by an oxidation step as a polishing treatment at a bench-scale level. A superabsorbent polymer (SAP) and a mineral and salt formulation able to generate molecular iodine were used as coagulant and oxidant agents,(More)
The treatment of a naphthenic acid model compound, cyclohexanoic acid, with classical Fenton, UV-H2O2, UV-Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-NTA-Fenton, and UV photolysis of Fe-NTA processes at pHs 3 and 8 was investigated. At 1.47 mM H2O2, 0.089 mM Fe, and 0.18 mM NTA, the UV-NTA-Fenton process at pH 3 exhibited the highest H2O2 decomposition(More)