Pamela A. Wearsch

Learn More
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar(More)
In this review, we discuss recent data from our laboratory that address two aspects of major histocompatibility complex (MHC) class I-restricted antigen processing. First, we consider the nature of the peptide-loading complex, which is the assembly of proteins in the endoplasmic reticulum (ER) into which newly synthesized MHC class I-beta(2) microglobulin(More)
GRP94 is an abundant, resident glycoprotein of the mammalian endoplasmic reticulum lumen and member of the hsp90 family of molecular chaperones. To identify the structure/function relationships which define the molecular basis of GRP94 activity, we have performed a structural analysis of native GRP94 and identified a discrete domain, representing amino(More)
Major histocompatibility complex (MHC) class I glycoproteins bind peptides in the endoplasmic reticulum after incorporation into the peptide-loading complex, whose core is the transporter associated with antigen processing. Other components are the chaperone calreticulin, the thiol oxidoreductase ERp57, and tapasin. Tapasin and ERp57 have been shown to(More)
GRP94, the endoplasmic reticulum paralog of hsp90, has recently been identified as a peptide and adenine nucleotide-binding protein. To determine if adenine nucleotides directly contribute to the regulation of GRP94 peptide binding activity, an in vitro peptide binding assay was developed. Using purified GRP94, we observed specific, saturable,(More)
Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here,(More)
Calreticulin is an endoplasmic reticulum (ER) chaperone that displays lectin activity and contributes to the folding pathways for nascent glycoproteins. Calreticulin also participates in the reactions yielding assembly of peptides onto nascent MHC class I molecules. By chemical and immunological criteria, we identify calreticulin as a peptide-binding(More)
The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep(More)
To better understand proteasomal degradation of nuclear proteins and viral antigens we studied mutated forms of influenza virus nucleoprotein (NP) that misfold and are rapidly degraded by proteasomes. In the presence of proteasome inhibitors, mutated NP (dNP) accumulates in highly insoluble ubiquitinated and nonubiquitinated species in nuclear substructures(More)
Homeobox-containing genes play an essential role in basic processes during embryogenesis and development, but little is known about the regulation of their expression. To elucidate regulatory networks that govern homeobox gene expression, we defined the core promoter of the mouse Gax homeobox gene and characterized its interactions with cellular proteins.(More)