Learn More
During the evolution of sea urchins, a transfer RNA gene lost its tRNA function and became part of a protein-coding gene. This functional loss of a tRNA with specificity for one group of leucine codons (CUN, where N is any base) was accompanied by the gain of a new tRNA with that specificity. The new tRNA gene for CUN codons appears to have evolved by(More)
Leber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic(More)
The MTERF protein family comprises members from Metazoans and plants. All the Metazoan MTERF proteins characterized to date, including the mitochondrial transcription termination factors, play a key role in mitochondrial gene expression. In this study we report the characterization of Drosophila MTERF5 (D-MTERF5), a mitochondrial protein existing only in(More)
Using a combination of bioinformatic and molecular biology approaches a Drosophila melanogaster protein, DmTTF, has been identified, which exhibits sequence and structural similarity with two mitochondrial transcription termination factors, mTERF (human) and mtDBP (sea urchin). Import/processing assays indicate that DmTTF is synthesised as a precursor of(More)
DmTTF is a Drosophila mitochondrial DNA-binding protein, which recognizes two sequences placed at the boundary of clusters of genes transcribed in opposite directions. To obtain in vivo evidences on the role of DmTTF, we characterized a DmTTF knock-down phenotype obtained by means of RNA interference in D.Mel-2 cells. By a combination of RNase protection(More)
The sea urchin mitochondrial D-loop binding protein (mtDBP) is a transcription termination factor that is able to arrest bidirectionally mitochondrial RNA chain elongation. The observation that the mtDBP binding site in the main non-coding region is located in correspondence of the 3' end of the triplex structure, where the synthesis of heavy strand(More)
To obtain information on the mechanisms responsible of the generation of ragged red fibers (RRF) during aging, we analyzed the mitochondrial genotype of single skeletal muscle fibers of healthy individuals having an age comprised between 45 and 92 years. The sequencing of the D-loop region showed many sequence changes with respect to the Cambridge reference(More)
Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle’s bioenergetics capability such as the brain’s frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the(More)
The sequences complementary to the nascent RNA molecules isolated from transcription complexes of HeLa cell mtDNA have been mapped on the H and L strands of mtDNA by the S1 protection technique. The distribution of these sequences among different Hpa II restriction fragments was found to reflect the position of these fragments in the Hpa II map of mtDNA.(More)
The content of DNA and of 16S rRNA and of two mRNAs, i.e., the mRNA for the cytochrome c oxidase subunit I and the mRNA for one subunit of the NADH dehydrogenase (ND4), in free (nonsynaptic) mitochondria of developing and adult rat cerebellum has been determined. During postnatal development, DNA content of free (nonsynaptic) mitochondria increases 10 times(More)