Learn More
Chemokines mediate monocyte adhesion to dysfunctional endothelial cells (ECs) and promote arterial inflammation during atherosclerosis. Hypoxia-inducible factor (HIF)-1α is expressed in various cell types of atherosclerotic lesions and is associated with lesional inflammation. However, the impact of endothelial HIF-1α in atherosclerosis is unclear. HIF-1α(More)
RATIONALE The chemokine CXCL12 (CXC motif ligand 12) and its receptor CXCR 4 (CXC motif receptor 4) direct the recruitment of smooth muscle progenitor cells (SPCs) in neointima formation after vascular injury. Lysophosphatidic acid (LPA) induces CXCL12 and neointimal accumulation of smooth muscle cells (SMCs) in uninjured arteries. Thus, we hypothesize that(More)
Oxidatively modified low-density lipoprotein (oxLDL) plays a key role in the initiation of atherosclerosis by increasing monocyte adhesion. The mechanism that is responsible for the oxLDL-induced atherogenic monocyte recruitment in vivo, however, still remains unknown. Oxidation of LDL generates lysophosphatidylcholine, which is the main substrate for the(More)
Trinucleotide repeat expansions have been implicated in the causation of a number of neurodegenerative disorders. In the case of fragile X syndrome, full expansion of the FMR1 repeat element (CGG)n has also been correlated with replication timing delay of the locus and proximal flanking sequences in male lymphoblasts. To define more extensively this altered(More)
Impaired endothelial recovery after the implantation of drug-eluting stents is a major concern because of the increased risk for late stent thrombosis. The disruption of the chemokine axis CXCL12/CXCR4 inhibits neointima formation by blocking the recruitment of smooth muscle progenitor cells. To directly compare a CXCR4-targeting treatment strategy with(More)
PURPOSE OF REVIEW Neutrophils have traditionally been viewed in the context of acute infection and inflammation forming the first line of defense against invading pathogens. Neutrophil trafficking to the site of inflammation requires adhesion and transmigration through blood vessels, which is orchestrated by adhesion molecules, such as β2 and β1-integrins,(More)
We describe a novel method to map chromosomal Escherichia coli::Tn5 insertion mutations rapidly. This method utilizes the ends of Tn5 and the E. coli REP sequence as primer binding sites for the polymerase chain reaction (PCR). The unique E. coli chromosomal sequence located between these primer binding sites is amplified by PCR and used as a probe to(More)
X chromosome inactivation is associated with a highly asynchronous pattern of DNA replication at most X-linked loci in females. We studied the human HPRT locus, which is subject to X inactivation and expressed from only the active homolog, with the goal of comparing replication properties between the active and inactive homologs in this region using a(More)
MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in(More)
Since the pioneering era of interventional cardiology, platelet deposition after vascu-lar injury has been regarded of central importance for neointima formation and subsequent restenosis (1–3). Depending on the type of injury, i.e. how many layers of the vessel wall are affected, surface-adherent platelets can be distinguished from mural thrombus extending(More)
  • 1