Learn More
Mitogen activated protein kinase (MAPK) cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA) produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling(More)
Alopecia areata (AA) is among the most highly prevalent human autoimmune diseases, leading to disfiguring hair loss due to the collapse of immune privilege of the hair follicle and subsequent autoimmune attack. The genetic basis of AA is largely unknown. We undertook a genome-wide association study (GWAS) in a sample of 1,054 cases and 3,278 controls and(More)
Protein-protein interaction is one of the crucial ways to decipher the functions of proteins and to understand their role in complex pathways at cellular level. Such a protein-protein interaction network in many crop plants remains poorly defined owing largely to the involvement of high costs, requirement for state of the art laboratory, time and labour(More)
The canonical mitogen activated protein kinase (MAPK) signaling pathway plays a vital role in carrying out the normal growth and development of the plant. The pathway, connecting the upstreams signal with the downstream target is considered to be linear, mostly starting with a MAPKKK and ending in a MAPK. Here we report a novel interaction between two rice(More)
The root system is an imperative component of a plant, involved in water and nutrient acquisition from the soil. Any subtle change in the root system may lead to drastic changes in plant productivity. Both auxin and cytokinin are implicated in regulating various root developmental aspects. One of the major signaling cascades facilitating various hormonal(More)
Ultra violet radiation leads to accumulation of phytoalexins (PA) in rice (Oryza sativa) which are typically accumulated when the plants are infected with rice blast pathogen Magnaporthe oryzae. Although extensive works have been done in elucidating phytoalexin biosynthesis, UV stress signal transduction leading to accumulations of rice phytoalexin is(More)
A number of environmental chemicals are known to cause neurotoxicity to exposed organisms. Chromium (Cr), one of the major elements in earth’s crust, is a priority environmental chemical depending on its valence state, and limited information is available on its neurotoxic potential. We, therefore, explored the neurotoxic potential of environmentally(More)
Increased level of Ultra violet-B radiation at earth’s surface has several deleterious consequences for plants and ecosystems. Higher UV-B level affects crop plants in several ways and also gives penalty in terms of crop yield. With changing climatic conditions it is crucial to elucidate signal transduction pathway involved in UV-B stress. Here, involvement(More)
  • 1