Pallabi De

Learn More
V(D)J recombination generates functional immunoglobulin and T-cell receptor genes in developing lymphocytes. The recombination-activating gene 1 (RAG1) and RAG2 proteins catalyze site-specific DNA cleavage in this recombination process. Biochemical studies have identified catalytically active regions of each protein, referred to as the core regions. Here,(More)
The recombination-activating protein, RAG1, a key component of the V(D)J recombinase, binds multiple Zn(2+) ions in its catalytically required core region. However, the role of zinc in the DNA cleavage activity of RAG1 is not well resolved. To address this issue, we determined the stoichiometry of Zn(2+) ions bound to the catalytically active core region of(More)
RAG1 and RAG2 proteins catalyze site-specific DNA cleavage reactions in V(D)J recombination, a process that assembles antigen receptor genes from component gene segments during lymphocyte development. The first step towards the DNA cleavage reaction is the sequence-specific association of the RAG proteins with the conserved recombination signal sequence(More)
Functional immunoglobulin and T cell receptor genes are produced in developing lymphocytes by V(D)J recombination. The initial site-specific DNA cleavage steps in this process are catalyzed by the V(D)J recombinase, consisting of RAG1 and RAG2, which is directed to appropriate DNA cleavage sites by recognition of the conserved recombination signal sequence(More)
RAG1 and RAG2 catalyze the first DNA cleavage steps in V(D)J recombination. We demonstrate that the isolated central domain of RAG1 has inherent single-stranded (ss) DNA cleavage activity, which does not require, but is enhanced by, RAG2. The central domain, therefore, contains the active-site residues necessary to perform hydrolysis of the DNA(More)
  • 1