Learn More
  • Z Svab, P Maliga
  • Proceedings of the National Academy of Sciences…
  • 1993
We report here a 100-fold increased frequency of plastid transformation in tobacco by selection for a chimeric aadA gene encoding aminoglycoside 3"-adenylyltransferase, as compared with that obtained with mutant 16S rRNA genes. Expression of aadA confers resistance to spectinomycin and streptomycin. In transforming plasmid pZS197, a chimeric aadA is cloned(More)
The newpPZP Agrobacterium binary vectors are versatile, relatively small, stable and are fully sequenced. The vectors utilize the pTiT37 T-DNA border regions, the pBR322bom site for mobilization fromEscherichia coli toAgrobacterium, and the ColE1 and pVS1 plasmid origins for replication inE. coli and inAgrobacterium, respectively. Bacterial marker genes in(More)
The plastid genome in photosynthetic higher plants encodes subunits of an Escherichia coli-like RNA polymerase (PEP) which initiates transcription from E.coli sigma70-type promoters. We have previously established the existence of a second nuclear-encoded plastid RNA polymerase (NEP) in photosynthetic higher plants. We report here that many plastid genes(More)
Stable genetic transformation of the plastid genome is reported in a higher plant, Nicotiana tabacum. Plastid transformation was obtained after bombardment of leaves with tungsten particles coated with pZS148 plasmid DNA. Plasmid pZS148 (9.6 kilobases) contains a 3.7-kilobase plastid DNA fragment encoding the 16S rRNA. In the 16S rRNA-encoding DNA (rDNA) a(More)
  • L A Allison, L D Simon, P Maliga
  • The EMBO journal
  • 1996
The plastid genome in higher plants encodes subunits of an Escherichia coli-like RNA polymerase which initiates transcription of plastid genes from sequences resembling E.coli sigma70-type promoters. By deleting the gene for the essential beta subunit of the tobacco E.coli-like RNA polymerase, we have established the existence of a second plastid(More)
Plastids of higher plants are semi-autonomous organelles with a small, highly polyploid genome and their own transcription-translation machinery. This review provides an overview of the technology for the genetic modification of the plastid genome including: vectors, marker genes and gene design, the use of gene knockouts and over-expression to probe(More)
Plastid transformation is reported in Arabidopsis thaliana following biolistic delivery of transforming DNA into leaf cells. Transforming plasmid pGS31A carries a spectinomycin resistance (aadA) gene flanked by plastid DNA sequences to target its insertion between trnV and the rps12/7 operon. Integration of aadA by two homologous recombination events via(More)
Protoplasts of Nicotiana tabacum SRI (streptomycin resistant) and of Nicotiana knightiana (streptomycin sensitive) were fused using polyethylene glycol treatment. From three heterokaryons 500 clones were obtained. From the 43 which were further investigated, 6 resistant, 3 sensitive, and 34 chimeric (consisting of resistant and sensitive sectors) calli were(More)
The plastid genomes of several plants contain homologues, termed ndh genes, of genes encoding subunits of the NADH:ubiquinone oxidoreductase or complex I of mitochondria and eubacteria. The functional significance of the Ndh proteins in higher plants is uncertain. We show here that tobacco chloroplasts contain a protein complex of 550 kDa consisting of at(More)