Pakorn Kanchanawong

Learn More
Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing. Focal adhesions are multifunctional organelles that mediate cell-ECM adhesion, force transmission, cytoskeletal regulation and signalling. Focal adhesions consist of a complex network of trans-plasma-membrane integrins and cytoplasmic proteins that(More)
Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM),(More)
Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D(More)
Mutagenesis experiments suggest that Asp79 in cellulase Cel6A (E2) from Thermobifida fusca has a catalytic role, in spite of the fact that this residue is more than 13 A from the scissile bond in models of the enzyme-substrate complex built upon the crystal structure of the protein. This suggests that there is a substantial conformational shift in the(More)
In the preceding accompanying paper [Shu, X., et al. (2007) Biochemistry 46, 12005-12013], the 1.5 A resolution crystal structure of green fluorescent protein (GFP) variant S65T/H148D is presented, and the possible consequences of an unusual short hydrogen bond (<or=2.4 A) between the carboxyl oxygen of Asp148 and the phenol oxygen of the chromophore are(More)
Multicellularity in animals requires dynamic maintenance of cell–cell contacts. Intercellularly ligated cadherins recruit numerous proteins to form supramolecular complexes that connect with the actin cytoskeleton and support force transmission. However, the molecular organization within such structures remains unknown. Here we mapped protein organization(More)
E-cadherin is the major adhesion receptor in epithelial adherens junctions, which connect cells to form tissues and are essential for morphogenesis and homeostasis. The mechanism by which E-cadherin monomers cluster and become organized in adherens junctions remains poorly understood. Here, using superresolution microscopy techniques in combination with(More)
Many biomolecules in cells can be visualized with high sensitivity and specificity by fluorescence microscopy. However, the resolution of conventional light microscopy is limited by diffraction to ~200-250 nm laterally and >500 nm axially. Here, we describe superresolution methods based on single-molecule localization analysis of photoswitchable(More)
The power of fluorescence microscopy to study cellular structures and macromolecular complexes spans a wide range of size scales, from studies of cell behavior and function in physiological 3D environments to understanding the molecular architecture of organelles. At each length scale, the challenge in 3D imaging is to extract the most spatial and temporal(More)
Stark and absorption spectra for the hole-transfer band of the bacteriochlorophyll special pair in the wild-type and L131LH, M160LH, and L131LH/M160LH mutants of the bacterial reaction center of Rhodobacter sphaeroides are presented, along with extensive analyses based on nonadiabatic spectral simulations. Dramatic changes in the Stark spectra are induced(More)