Pak-Wing Fok

Learn More
We unify step bunching ͑SB͒ instabilities occurring under various conditions on crystal surfaces below roughening. We show that when attachment-detachment of atoms at step edges is the rate-limiting process, the SB of interacting, concentric circular steps is equivalent to the commonly observed SB of interacting straight steps under deposition, desorption,(More)
The morphological relaxation of faceted crystal surfaces is studied via a continuum approach. Our formulation includes (i) an evolution equation for the surface slope that describes step line tension, g1, and step repulsion energy, g3; and (ii) a condition at the facet edge (a free boundary) that accounts for discrete effects via the collapse times, t(n),(More)
Damaged or mismatched bases in DNA can be repaired by base excision repair enzymes (BER) that replace the defective base. Although the detailed molecular structures of many BER enzymes are known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport (CT) along DNA [Yavin et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3546(More)
The surface of a nanostructure relaxing on a substrate consists of a finite number of interacting steps and often involves the expansion of facets. Prior theoretical studies of facet evolution have focused on models with an infinite number of steps, which neglect edge effects caused by the presence of the substrate. By considering diffusion of adsorbed(More)
Plaques are fatty deposits that grow mainly in arteries and develop as a result of a chronic inflammatory response. Plaques are characterized as 'vulnerable' when they have large internal regions of necrosis and are heavily infiltrated by macrophages. The particular composition of a vulnerable plaque renders it susceptible to rupture, which releases(More)
We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left-hand boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice, particles can adsorb or desorb, and the right-hand boundary is defined by a wall particle. The(More)
for their continuous support, advisement, and encouragement over the past two years. Their guidance has taught me indispensable lessons about research that I will carry for the rest of my career. I am also grateful to Dr. Emily Hill for her mentorship from the very beginning of my undergraduate research experience. I would also like to thank the other(More)
In this paper, we study the inverse problem of reconstructing the spatially dependent transition rate F (x) of a one-dimensional Broadwell process from exit time distributions. In such a process, an advecting particle is assumed to undergo transitions between states with constant positive (+v) and negative (−v) velocities. The goal is to reconstruct the(More)
In this paper we consider the problem of recovering the drift function of a Brownian motion from its distribution of first passage times, given a fixed starting position. Our approach uses the backward Kolmogorov equation for the probability density function (pdf) of first passage times. By taking Laplace Transforms, we reduce the problem to calculating the(More)