Learn More
Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an(More)
Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are(More)
Metabotropic glutamate receptor 5 (mGlu5) is a target for the treatment of central nervous system (CNS) disorders, such as schizophrenia and Alzheimer's disease. Furthermore, mGlu5 has been shown to play an important role in hippocampal synaptic plasticity, specifically in long-term depression (LTD) and long-term potentiation (LTP), which is thought to be(More)
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu(5) PAMs act as pure PAMs, only potentiating mGlu(5) responses to glutamate whereas others [allosteric agonists(More)
This Letter describes the hit-to-lead progression and SAR of a series of biphenyl acetylene compounds derived from an HTS screening campaign targeting the mGlu(5) receptor. 'Molecular switches' were identified that modulated modes of pharmacology, and several compounds within this series were shown to be efficacious in reversal of amphetamine induced(More)
Treatment options for schizophrenia that address all symptom categories (positive, negative, and cognitive) are lacking in current therapies for this disorder. Compounds targeting the metabotropic glutamate (mGlu) receptors hold promise as a more comprehensive therapeutic alternative to typical and atypical antipsychotics and may avoid the occurrence of(More)
Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3(More)
Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs(More)
A quantitative microdialysis method was used to determine the effect of local perfusion of 0, 100, 200, and 300 nM neostigmine (NEO) on acetylcholine (ACh) extracellular concentration and microdialysis extraction fraction (E(d)) in the striatum of the rat. Because of the efficiency of AChE, the inhibition of this enzyme is expected to result in a(More)
BACKGROUND Metabotropic glutamate receptor subtype 5 (mGlu5) activators have emerged as a novel approach to the treatment of schizophrenia. Positive allosteric modulators (PAMs) of mGlu5 have generated tremendous excitement and fueled major drug discovery efforts. Although mGlu5 PAMs have robust efficacy in preclinical models of schizophrenia, preliminary(More)