Pablo Pedregal

Learn More
We analyze in this work a spatio-temporal optimal design problem governed by a linear damped 1-D wave equation. The problem consists in seeking simultaneously the spatio-temporal layout of two isotropic materials and the static position of the damping set in order to minimize a functional depending quadratically on the gradient of the state. The lack of(More)
We propose an alternative method for computing effectively the solution of non-linear, fixed-terminal-time, optimal control problems when they are given in Lagrange, Bolza or Mayer forms. This method works well when the nonlinearities in the control variable can be expressed as polynomials. The essential of this proposal is the transformation of a(More)
This paper deals with the approximation of systems of differential-algebraic equations based on a certain error functional naturally associated with the system. In seeking to minimize the error, by using standard descent schemes, the procedure can never get stuck in local minima but will always and steadily decrease the error until getting to the solution(More)