Pablo M. Cincotta

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
In this paper we show that the Conditional Entropy of nearby orbits may be a useful tool to explore the phase space associated to a given Hamiltonian. The arc length parameter along the orbits, instead of the time, is used as a random variable to compute the entropy. In the rst part of this work we summarize the main analytical results to support this tool(More)
We model chaotic diffusion in a symplectic four-dimensional (4D) map by using the result of a theorem that was developed for stochastically perturbed integrable Hamiltonian systems. We explicitly consider a map defined by a free rotator (FR) coupled to a standard map (SM). We focus on the diffusion process in the action I of the FR, obtaining a(More)
In the present paper, we provide results and discussions concerning the processes that lead to local and global chaotic diffusion in the phase space of multidimensional conservative systems. We investigate and provide a measure of the extent of the domain over which diffusion may occur. All these issues are thoroughly discussed by dealing with a(More)
  • 1