Learn More
Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and(More)
We report the development and validation of a novel suite of programs, FITTED 1.0, for the docking of flexible ligands into flexible proteins. This docking tool is unique in that it can deal with both the flexibility of macromolecules (side chains and main chains) and the presence of bridging water molecules while treating protein/ligand complexes as(More)
In this contribution, we report that a self-assembled platinum molecular square [Pt(en)(4,4'-dipyridyl)]4 can act as an efficient G-quadruplex binder and telomerase inhibitor. Molecular modeling studies show that the square arrangement of the four bipyridyl ligands, the highly electropositive nature of the overall complex, as well as hydrogen bonding(More)
In our previous report, we investigated the impact of protein flexibility and the presence of water molecules on the pose-prediction accuracy of major docking programs. To complete these investigations, we report herein a study of the impact of these two aspects on the accuracy of scoring functions. To this effect, we developed two sets of protein/ligand(More)
Golgi alpha-mannosidase II (GMII), a zinc-dependent glycosyl hydrolase, is a promising target for drug development in anti-tumor therapies. Using X-ray crystallography, we have determined the structure of Drosophila melanogaster GMII (dGMII) complexed with three different inhibitors exhibiting IC50's ranging from 80 to 1000 microM. These structures, along(More)
We report herein our efforts in the development of three empirical scoring functions with application in protein-ligand docking. A first scoring function was developed from 209 crystal structures of protein-ligand complexes and a second one from 946 cross-docked complexes. Tuning of the coefficients for the different terms making up these functions was(More)
HCV NS5B polymerase is a validated target for the treatment of hepatitis C, known to be one of the most challenging enzymes for docking programs. In order to improve the low accuracy of existing docking methods observed with this challenging enzyme, we have significantly modified and updated F itted 1.0, a recently reported docking program, into F itted(More)
As part of a large medicinal chemistry program, we wish to develop novel selective estrogen receptor modulators (SERMs) as potential breast cancer treatments using a combination of experimental and computational approaches. However, one of the remaining difficulties nowadays is to fully integrate computational (i.e., virtual, theoretical) and medicinal(More)
Telomerase inhibition through guanine quadruplex sequestration by small-molecule drugs is of great current interest as an anticancer strategy. G-quadruplexes (GQs) can be formed at the guanine-rich sequences found at the end of the telomere. They possess a large electron-rich pi-surface which is favorable for the binding of electron-poor small molecules.(More)
The synergy of aromatic gain and hydrogen bonding in a supramolecular polymer is explored. Partially aromatic bis(squaramide) bolaamphiphiles were designed to self-assemble through a combination of hydrophobic, hydrogen-bonding, and aromatic effects into stiff, high-aspect-ratio fibers. UV and IR spectroscopy show electron delocalization and geometric(More)