Learn More
It is well known that the density of neurons varies within the adult brain. In neocortex, this includes variations in neuronal density between different lamina as well as between different regions. Yet the concomitant variation of the microvessels is largely uncharted. Here, we present automated histological, imaging, and analysis tools to simultaneously(More)
We present a method to form an optical window in the mouse skull that spans millimeters and is stable for months without causing brain inflammation. This enabled us to repeatedly image blood flow in cortical capillaries of awake mice and determine long-range correlations in speed. We also repeatedly imaged dendritic spines, microglia and angioarchitecture,(More)
The maintenance of robust blood flow to the brain is crucial to the health of brain tissue. We examined the pial network of the middle cerebral artery, which distributes blood from the cerebral arteries to the penetrating arterioles that source neocortical microvasculature, to characterize how vascular topology may support such robustness. For both mice and(More)
What is the nature of the vascular architecture in the cortex that allows the brain to meet the energy demands of neuronal computations? We used high-throughput histology to reconstruct the complete angioarchitecture and the positions of all neuronal somata of multiple cubic millimeter regions of vibrissa primary sensory cortex in mouse. Vascular networks(More)
Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods(More)
  • Ehud Cohen, Johan F. Paulsson, Pablo Blinder, Tal Burstyn-Cohen, Deguo Du, Gabriela Estepa +6 others
  • 2009
The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimer's disease-linked human peptide, Abeta. We reduced IGF signaling in Alzheimer's model mice and(More)
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular(More)
Microinfarctions are present in the aged and injured human brain. Their clinical relevance is controversial, with postulated sequelae ranging from cognitive sparing to vascular dementia. To address the consequences of microinfarcts, we used controlled optical methods to create occlusions of individual penetrating arterioles or venules in rat cortex. Single(More)
The neurovascular system may be viewed as a distributed nervous system within the brain. It transforms local neuronal activity into a change in the tone of smooth muscle that lines the walls of arterioles and microvessels. We review the current state of neurovascular coupling, with an emphasis on signaling molecules that convey information from neurons to(More)
Plasma-mediated ablation makes use of high energy laser pulses to ionize molecules within the first few femtoseconds of the pulse. This process leads to a submicrometer-sized bubble of plasma that can ablate tissue with negligible heat transfer and collateral damage to neighboring tissue. We review the physics of plasma-mediated ablation and its use as a(More)