Learn More
Previous studies have shown that both 3-amino-1,2,4-triazole (AT), which inhibits metabolism of ethanol (EtOH) to acetaldehyde by inhibiting catalase, and D-penicillamine (D-P), an acetaldehyde-sequestering agent, modulate EtOH-conditioned place preference (CPP) in male albino Swiss (IOPS Orl) mice. These studies followed a reference-dose-like procedure,(More)
Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial(More)
Calcium (Ca(2+)) has been characterized as one of the most ubiquitous, universal and versatile intracellular signaling molecules responsible for controlling numerous cellular processes. Ethanol-induced effects on Ca(2+) distribution and flux have been widely studied in vitro, showing that acute ethanol administration can modulate intracellular Ca(2+)(More)
Recent evidence supports the influence of neuroimmune system activation on behavior. We have demonstrated that ethanol activates the innate immune system by stimulating toll-like receptor 4 (TLR4) signaling in glial cells, which triggers the release of inflammatory mediators and causes neuroinflammation. The present study aimed to evaluate whether the(More)
Calcium flux through voltage gate calcium channels (VGCC) is involved in many neuronal processes such as membrane depolarization, gene expression, hormone secretion, and neurotransmitter release. Several studies have shown that either acute or chronic exposure to ethanol modifies calcium influx through high voltage activated channels. Of special relevance(More)
Calcium has been characterized as one of the most ubiquitous, universal and versatile intracellular signals. Among other substances with the ability to alter intracellular calcium levels, ethanol has been described as particularly relevant because of its social and economic impact. Ethanol effects on calcium distribution and flux in vitro have been widely(More)
BACKGROUND The cAMP-dependent protein kinase (PKA) signaling transduction pathway has been shown to play an important role in the modulation of several ethanol (EtOH)-induced behavioral actions. In vivo, short-term exposure to EtOH up-regulates the cAMP-signaling cascade. Interestingly, different Ca(2+) -dependent cAMP-PKA cascade mediators play a critical(More)
BACKGROUND Neuroplasticity associated with drug-induced behavioral sensitization has been associated with excessive drug pursuit and consumption characteristic of addiction. Repeated intraperitoneal (ip) injections of ethanol (EtOH) can induce psychomotor sensitization in mice. In terms of its clinical relevance, however, it is important to determine(More)
The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and(More)
The cAMP-dependent protein kinase A (PKA) signaling transduction pathway has been shown to play an important role in the modulation of several ethanol-induced behaviors. Different studies have demonstrated intracellular calcium (Ca2+)-dependent activation of the PKA cascade after ethanol administration. Thus, the cAMP cascade mediator Ca2+-dependent(More)