• Publications
  • Influence
The IceCube Collaboration
The AMANDA-II data collected during the period 2000–2003 have been analysed in a search for a diffuse flux of high-energy extra-terrestrial muon neutrinos from the sum of all sources in the Universe.
Optical properties of deep glacial ice at the South Pole
We have remotely mapped optical scattering and absorption in glacial ice at the South Pole for wavelengths between 313 and 560 nm and depths between 1100 and 2350 m. We used pulsed and continuous
Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube
A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18 000 up-going atmospheric muon neutrino events in IceCube. Boosted
Limits on a muon flux from neutralino annihilations in the sun with the IceCube 22-string detector.
Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV.
Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice
The detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA) is reported, establishing a technology with which to build a kilometre-scale neutrini observatory necessary for astrophysical observations.
Extending the search for neutrino point sources with IceCube above the horizon.
It is shown that the region above the horizon can be included by suppressing the background through energy-sensitive cuts, which improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth.
Light tracking for glaciers and oceans -- Scattering and absorption in heterogeneous media with Photonics
In the field of neutrino astronomy, glacial ice or deep ocean water are used as detector medium. Elementary particle interactions are studied using in situ detectors recording time distributions and
Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models,
Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data
The absence of signal candidate events in the sample of 333.5 days of live time significantly improves model-independent limits from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an E-2 spectrum in the energy range 2.0 x 10(6) - 6.3x 10(9) GeV.