Learn More
Gal4p-mediated activation of galactose gene expression in Saccharomyces cerevisiae normally requires both galactose and the activity of Gal3p. Recent evidence suggests that in cells exposed to galactose, Gal3p binds to and inhibits Ga180p, an inhibitor of the transcriptional activator Gal4p. Here, we report on the isolation and characterization of novel(More)
The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation of GAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and(More)
The Gal4, Gal80, and Gal3 proteins of Saccharomyces cerevisiae constitute a galactose-responsive regulatory switch for GAL gene promoters. The low cellular levels of these proteins have hampered mechanistic studies and limit the utility of the GAL gene promoters for high-yield production of endogenous and exogenous proteins. We have constructed two new(More)
Plant WRKY genes encode a complex and ancient class of zinc-finger transcription factors that are involved in multiple biological processes, especially in regulating defense against abiotic stresses. Despite a growing number of studies on the genomic organization of the WRKY gene family in various species, little information is available about this family(More)
  • 1