Learn More
Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the major sites of fast synaptic inhibition in the brain. An essential determinant for the efficacy of synaptic inhibition is the regulation of GABA(A)R cell surface stability. Here, we have examined the regulation of GABA(A)R endocytic sorting, a critical regulator of cell surface receptor number. In(More)
The efficacy of GABAergic synaptic inhibition is a principal factor in controlling neuronal activity. We demonstrate here that brain-derived neurotrophic factor modulates the activity of GABA(A) receptors, the main sites of fast synaptic inhibition in the brain, within minutes of application. Temporally, this comprised an early enhancement in the miniature(More)
1. Whole-cell glycine-activated currents were recorded from human embryonic kidney (HEK) cells expressing wild-type and mutant recombinant homomeric glycine receptors (GlyRs) to locate the inhibitory binding site for Zn2+ ions on the human alpha1 subunit. 2. Glycine-activated currents were potentiated by low concentrations of Zn2+ (<10 microM) and inhibited(More)
GABA (gamma-aminobutyric acid)(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Here we show that the functional coupling of GABA(B)R1/GABA(B)R2 receptors to inwardly rectifying K(+) channels rapidly desensitizes. This effect is alleviated after direct phosphorylation of a single(More)
Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have(More)
Controlling the number of functional gamma-aminobutyric acid A (GABA(A)) receptors in neuronal membranes is a crucial factor for the efficacy of inhibitory neurotransmission. Here we describe the direct interaction of GABA(A) receptors with the ubiquitin-like protein Plic-1. Furthermore, Plic-1 is enriched at inhibitory synapses and is associated with(More)
Carcinoembryonic antigen (CEA) is an oncofetal antigen whose function in the progression of colorectal carcinoma remains unclear although recent studies suggest it participates in homotypic cellular adhesion. We have previously shown that 40 micrograms of CEA injected intravenously into athymic nude mice enhances experimental metastasis in liver and lung by(More)
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic(More)
Type A gamma-aminobutyric acid receptors (GABA(A)), the major sites of fast synaptic inhibition in the brain, are believed to be composed predominantly of alpha, beta, and gamma subunits. Although cell surface expression is essential for GABA(A) receptor function, little is known regarding its regulation. To address this issue, the membrane stability of(More)