Learn More
A primary goal of statistical shape analysis is to describe the variability of a population of geometric objects. A standard technique for computing such descriptions is principal component analysis. However, principal component analysis is limited in that it only works for data lying in a Euclidean vector space. While this is certainly sufficient for(More)
Diffusion tensor magnetic resonance imaging (DT-MRI) is emerging as an important tool in medical image analysis of the brain. However, relatively little work has been done on producing statistics of diffusion tensors. A main difficulty is that the space of diffusion tensors, i.e., the space of symmetric, positive-definite matrices, does not form a vector(More)
Regression analysis is a powerful tool for the study of changes in a dependent variable as a function of an independent regressor variable, and in particular it is applicable to the study of anatomical growth and shape change. When the underlying process can be modeled by parameters in a Euclidean space, classical regression techniques [13, 34] are(More)
M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse(More)
Quantitative diffusion tensor imaging (DTI) has become the major imaging modality to study properties of white matter and the geometry of fiber tracts of the human brain. Clinical studies mostly focus on regional statistics of fractional anisotropy (FA) and mean diffusivity (MD) derived from tensors. Existing analysis techniques do not sufficiently take(More)
Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether(More)
This paper describes a method for building efficient representations of large sets of brain images. Our hypothesis is that the space spanned by a set of brain images can be captured, to a close approximation, by a low-dimensional, nonlinear manifold. This paper presents a method to learn such a low-dimensional manifold from a given data set. The manifold(More)
The arcuate fasciculus is a white matter fiber bundle of great importance in language. In this study, diffusion tensor imaging (DTI) was used to infer white matter integrity in the arcuate fasciculi of a group of subjects with high-functioning autism and a control group matched for age, handedness, IQ, and head size. The arcuate fasciculus for each subject(More)
The tensors produced by diffusion tensor magnetic resonance imaging (DT-MRI) represent the covariance in a Brownian motion model of water diffusion. Under this physical interpretation, diffusion tensors are required to be symmetric, positive-definite. However, current approaches to statistical analysis of diffusion tensor data, which treat the tensors as(More)
Principal component analysis has proven to be useful for understanding geometric variability in populations of pa-rameterized objects. The statistical framework is well understood when the parameters of the objects are elements of a Euclidean vector space. This is certainly the case when the objects are described via landmarks or as a dense collection of(More)