Learn More
EphA family receptor tyrosine kinases and their ephrin-A ligands are involved in patterning axonal connections during brain development, but until now a role for these molecules in the mature brain had not been elucidated. Here, we show that both the EphA5 receptor and its ephrin-A ligands (2 and 5) are expressed in the adult mouse hippocampus, and the(More)
Long-term potentiation (LTP) in the sensorimotor cortex of freely moving rats has been associated with changes in dendritic morphology and dendritic spine density. The current research examined changes in synaptic number and ultrastructure associated with LTP in this cortical region. LTP was induced over a 1 h period and the animals were sacrificed 2 h(More)
Middle cerebral artery (MCA) stroke in the rat produces impairments in skilled movements. The lesion damages lateral neocortex but spares primary motor cortex (M1), raising the question of the origin of skilled movement deficits. Here, the behavioral deficits of MCA stroke were identified and then M1 was examined neurophysiologically and neuroanatomically.(More)
Intracerebroventricular (ICV) administration of neuropeptide Y (NPY) has been shown to decrease energy expenditure, induce hypothermia, and stimulate food intake. Recent evidence has suggested that the Y5 receptor may be a significant mediator of NPY-stimulated feeding. The present study attempts to further characterize the role of NPY Y5-receptor subtypes(More)
Bisphosphonate (BP), a specific inhibitor of osteoclasts, has been widely used as a beneficial agent for the treatment of bone metastases in patients with breast cancer. It is well recognized that BP reduces osteolysis by promoting apoptosis in osteoclasts. However, recent animal and human data suggest that BPs not only reduce osteolysis associated with(More)
Studies have shown that many glial cells in the CNS possess receptors for neurotransmitters and that synapse-like contacts exist between glial cells and axonal terminals. Although synapse-like contacts are present between the glial cells (stellate cells) of the pituitary pars intermedia and the axons from the arcuate nucleus, it is not known whether these(More)
Intracellular recordings for current and voltage clamping were obtained from 130 neuroendocrine cells of the pars intermedia (PI) in intact pituitaries maintained in vitro. Spontaneous and evoked action potentials were blocked by TTX or by intracellular injection of a local anesthetic, QX-222. After potassium (K+) currents were blocked by tetraethylammonium(More)
Melanotrophs of the rat pars intermedia are innervated by dopaminergic fibers traveling through the pituitary stalk which inhibit secretion via an action on D-2 receptors. As secretion from the melanotroph has been shown to be calcium (Ca2+) dependent, it is possible that dopamine may have an action to inhibit Ca2+ currents in these cells. This possibility(More)
Recent determinations of high production rates (up to 30 percent of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a "microbial loop" that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of(More)
The pharmacological sensitivities of the low threshold (LT) and high threshold (HT) calcium currents were studied using single electrode voltage clamp techniques in melanotrophs of the intact rat intermediate pituitary. The T-type LT current was selectively abolished by 200 microM nickel whereas the HT current was preferentially abolished by 25 microM(More)