Learn More
Control of intermolecular interactions is crucial to the exploitation of molecular semiconductors for both organic electronics and the viable manipulation and incorporation of single molecules into nano-engineered devices. Here we explore the properties of a class of materials that are engineered at a supramolecular level by threading a conjugated(More)
Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in(More)
We study the mechanism of surface adsorption of organic dyes on graphene, and successive exfoliation in water of these dye-functionalized graphene sheets. A systematic, comparative study is performed on pyrenes functionalized with an increasing number of sulfonic groups. By combining experimental and modeling investigations, we find an unambiguous(More)
Due to a unique combination of electrical and thermal conductivity, mechanical stiffness, strength and elasticity, graphene became a rising star on the horizon of materials science. This two-dimensional material has found applications in many areas of science ranging from electronics to composites. Making use of different approaches, unfunctionalized and(More)
Much effort over the past decades has been focused on improving carrier mobility in organic thin-film transistors by optimizing the organization of the material or the device architecture. Here we take a different path to solving this problem, by injecting carriers into states that are hybridized to the vacuum electromagnetic field. To test this idea,(More)
The controlled electrochemical synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) as a model conjugated polymer is described here. We show that the morphology of electrochemically synthesized PEDOT can be finely tuned directly in a device, by carefully guiding the nucleation and growth processes as well as electromigration phenomena, resulting in(More)
The rise of 2D materials made it possible to form heterostructures held together by weak interplanar van der Waals interactions. Within such van der Waals heterostructures, the occurrence of 2D periodic potentials significantly modifies the electronic structure of single sheets within the stack, therefore modulating the material properties. However, these(More)
In organic field-effect transistors (OFETs) the electrical characteristics of polymeric semiconducting materials suffer from the presence of structural/morphological defects and grain boundaries as well as amorphous domains within the film, hindering an efficient transport of charges. To improve the percolation of charges we blend a regioregular(More)