Learn More
Interruption of the corticostriatal pathway by undercutting the frontal cortex resulted after 2 weeks in a 40% reduction of basal acetylcholine (ACh) release in vivo, and in inhibition of the striatal sodium-dependent high-affinity uptake of choline (SDHACU) to the same extent. The lesion, too, completely prevented the rise (about 35%) in striatal ACh(More)
The effects of nicergoline on basal and K(+)-stimulated release of ACh in the hippocampus of 3- and 19-month old rats has been studied by microdialysis. A significant decrease of basal ACh release (59%) was found in aged vehicle treated rats in comparison to young rats. High-K+ (100 mM) in the perfusate strongly increased the release of ACh by up to 6-fold(More)
Tiaspirone, a potential antipsychotic drug, reduced the acetylcholine content of rat hemispheric brain regions (striatum 35%, hippocampus 20%, cortex 32% with no effect on N. accumbens) at an oral dose of 40 mg/kg. Choline content was uniformly raised in the same brain regions. A kinetic study showed that the drug is evenly distributed in the brain.(More)
Basal and agonist-stimulated phosphoinositide (PI) turnover and inositol 1,4,5 -trisphospate (InsP3) content in rat brain were investigated after chronic nicergoline (SERMION) treatment. Oral administration of nicergoline (5 mg/kg b.i.d. for 7 weeks) enhanced the basal turnover of PI in the cerebral cortex compared to controls. This effect was paralleled by(More)
Since 1989 we performed stereotactic radiotherapy treatments of cerebral arterovenous malformations (AVM), estimating three-dimensional (3-D) localization and shape of target volumes by the Leksell stereotactic helmet on two orthogonal radiographic projections. Due to the limitations of this method, we developed a new technique for the localization of the(More)
  • 1