Learn More
Forensic DNA profiling is acknowledged as the model for a scientifically defensible approach in forensic identification science, as it meets the most stringent court admissibility requirements demanding transparency in scientific evaluation of evidence and testability of systems and protocols. In this paper, we propose a unified approach to forensic speaker(More)
Broccoli florets contain low levels of 3-methylsuphinylpropyl and 4-methylsulphinylbutyl glucosinolates. Following tissue disruption, these glucosinolates are hydrolysed to the corresponding isothiocyanates (ITCs), which have been associated with anticarcinogenic activity through a number of physiological mechanisms including the induction of phase II(More)
A number of secreted precursor proteins of bacteria, archaea, and plant chloroplasts stand out by a conserved twin arginine-containing sequence motif in their signal peptides. Many of these precursor proteins are secreted in a completely folded conformation by specific twin arginine translocation (Tat) machineries. Tat machineries are high molecular mass(More)
The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of(More)
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate(More)
The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine(More)
Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are(More)
We present a highly purposive technique to optically induce periodic photonic lattices enriched with a negative defect site by using a properly designed nondiffracting (ND) beam. As the interference of two or more ND beams with adequate mutual spatial frequency relations in turn reproduces an ND beam, we adeptly superpose a hexagonal and a Bessel beam to(More)
We realize an experimental control over the topological stability of three-lobe discrete vortex solitons by modifying the symmetry of a hexagonal photonic lattice optically induced in a photorefractive crystal. By continuously deforming the lattice wave in one transverse direction, we manipulate the coupling between lattice sites and induce or inhibit the(More)
Thiamethoxam (CGA293343; 3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was shown to increase the incidence of mouse liver tumors in an 18-month study; however, thiamethoxam was not hepatocarcinogenic in rats. Thiamethoxam is not genotoxic, and, given the late life generation of mouse liver tumors, suggests a(More)