Learn More
Recombinant adeno-associated virus 2 (rAAV2) has been shown to deliver genes to neurons effectively in the brain, retina, and spinal cord. The characterization of new AAV serotypes has revealed that they have different patterns of transduction in diverse tissues. We have investigated the tropism and transduction frequency in the central nervous system (CNS)(More)
1. The present study investigated regulation of reflex excitability after experimental contusion injury of the spinal cord. 2. Four measures of H-reflex excitability were evaluated in normal rats and at 6, 28, and 60 days after contusion injury at the T8 level: 1) reflex thresholds, 2) slope of the reflex recruitment curves, 3) maximal plantar(More)
Basic science advances in spinal cord injury and regeneration research have led to a variety of novel experimental therapeutics designed to promote functionally effective axonal regrowth and sprouting. Among these interventions are cell-based approaches involving transplantation of neural and non-neural tissue elements that have potential for restoring(More)
In this study, we have evaluated the capacity of recombinant adeno-associated virus (rAAV) vectors, containing cell type-specific promoters, to transduce neurons in vivo in the normal adult rat spinal cord. The neuron-specific enolase (NSE) promoter and the platelet-derived growth factor (PDGF) B-chain promoter were used to direct expression of a(More)
Fetal rat spinal cord tissue was obtained on gestational day 14 (E14) and transplanted into 2-4-mm-long intraspinal cavities produced by partial spinal cord lesions in adult and neonatal rats. At regular post-transplantation intervals, light and electron microscopy, autoradiographic demonstration of tritiated thymidine labelling, and immunocytochemical(More)
The nature and organization of the cellular substrate supporting axonal outgrowth during early regeneration of the spinal cord following transection and/or segment removal were examined in Xenopus tadpoles. Longitudinal axonal compartments, formed by radial ependymal processes in unoperated spinal cords, were maintained within the rostral and caudal stumps(More)
Multipotential progenitor cells grown from central nervous system (CNS) tissues in defined media supplemented with epidermal growth factor (EGF), when attached to a suitable substratum, differentiate to express neural and glial histochemical markers and morphologies. To assess the functional characteristics of such cells, expression of voltage-gated Na+ and(More)
Numerous studies have demonstrated anatomical and functional neuroplasticity following spinal cord injury. One of the more notable examples is return of ipsilateral phrenic motoneuron and diaphragm activity which can be induced under terminal neurophysiological conditions after high cervical hemisection in the rat. More recently it has been shown that a(More)
Neural tissue transplantation has become recognized widely as a powerful experimental tool for studying structure-function relationships, development, plasticity, and capacities for regeneration in the adult CNS. In addition, this area of investigation has generated considerable interest in approaches that might be applicable to a variety of catastrophic(More)