Learn More
Type 3 iodothyronine deiodinase (D3) is a selenoenzyme that inactivates thyroid hormone. It is necessary for T3 homeostasis in the central nervous system. D3 activity has been identified in many regions of the brain and parallels thyroid status, but the level at which it is regulated and its specific cellular locations are not known. We evaluated the effect(More)
Although thyroxine (3,5,3',5'-tetraiodothyronine, T4) is the principal secretory product of the vertebrate thyroid, its essential metabolic and developmental effects are all mediated by 3,5,3'-triiodothyronine (T3), which is produced from the prohormone by 5'-deiodination. The type-I iodothyronine deiodinase, a thiol-requiring propylthiouracil-sensitive(More)
To identify the specific locations of type 2 deiodinase (D2) messenger RNA (mRNA) in the hypothalamus and pituitary gland and determine its regulation by thyroid hormone, we performed in situ hybridization histochemistry, Northern analysis, and quantitative RT-PCR in euthyroid, hypothyroid, and hyperthyroid rats. By in situ hybridization histochemistry,(More)
Selenocysteine is incorporated cotranslationally at UGA codons, normally read as stop codons, in several bacterial proteins and in the mammalian proteins glutathione peroxidase (GPX), selenoprotein P and Type I iodothyronine 5' deiodinase (5'DI). Previous analyses in bacteria have suggested that a stem-loop structure involving the UGA codon and adjacent(More)
In rats subjected to thyroidectomy there was a two- to fourfold increase in cerebral cortex iodothyronine 5'-deiodinase activity within 24 hours. This increase was prevented by thyroxine replacement. The increased cortical 5'-deiodinase in chronically hypothyroid rats was normalized within 4 hours by a single intravenous injection of triiodothyronine. These(More)
Three cellular homologs of the v-erbA oncogene were previously identified in the rat; two of them encode high affinity receptors for the thyroid hormone triiodothyronine (T3). A rat complementary DNA clone encoding a T3 receptor form of the ErbA protein, called r-ErbA beta-2, was isolated. The r-ErbA beta-2 protein differs at its amino terminus from the(More)
There are several mechanisms by which homeothermic animals increase heat production, including shivering, sympathetic nervous system activation and stimulation of thyroid hormone secretion. Studies in rats have shown that increased sympathetic activity causes increased heat production in brown adipose tissue (BAT) after cold exposure or food ingestion.(More)
Thyroid hormone (T3) binds to a nuclear receptor protein which regulates gene expression by binding to specific DNA sequences near hormone-responsive genes. Proteins encoded by two cellular proto-oncogenes, c-erbA alpha and beta, bind T3 and can act as functional T3 receptors. In rats, alternative splicing of the alpha-gene transcript generates at least two(More)
We investigated the mechanism by which T4 regulates its activation to T3 by the type 2 iodothyronine deiodinase (D2). D2 is a short- lived (t1/2 50 min), 31-kDa endoplasmic reticulum (ER) integral membrane selenoenzyme that generates intracellular T3. Inhibition of the ubiquitin (Ub) activating enzyme, E1, or MG132, a proteasome blocker, inhibits both the(More)