Learn More
While searching for alternative reading-frame peptides encoded by influenza A virus that are recognized by CD8+ T cells, we found an abundant immunogenic peptide encoded by the +1 reading frame of PB1. This peptide derives from a novel conserved 87-residue protein, PB1-F2, which has several unusual features compared with other influenza gene products in(More)
Using the guinea pig as a model host, we show that aerosol spread of influenza virus is dependent upon both ambient relative humidity and temperature. Twenty experiments performed at relative humidities from 20% to 80% and 5 degrees C, 20 degrees C, or 30 degrees C indicated that both cold and dry conditions favor transmission. The relationship between(More)
Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for(More)
Influenza A virus specificity for the host is mediated by the viral surface glycoprotein hemagglutinin (HA), which binds to receptors containing glycans with terminal sialic acids. Avian viruses preferentially bind to alpha2-3-linked sialic acids on receptors of intestinal epithelial cells, whereas human viruses are specific for the alpha2-6 linkage on(More)
Nuclear import and export of viral nucleic acids is crucial for the replication cycle of many viruses, and elucidation of the mechanism of these steps may provide a paradigm for understanding general biological processes. Influenza virus replicates its RNA genome in the nucleus of infected cells. The influenza virus NS2 protein, which had no previously(More)
The NS1 protein is the only nonstructural protein encoded by influenza A virus. It has been proposed that the NS1 performs several regulatory functions during the viral replication cycle, including the regulation of synthesis, transport, splicing, and translation of mRNAs. Through the use of reverse genetics, a viable transfectant influenza A virus (delNS1)(More)
We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene(More)
The severe acute respiratory syndrome coronavirus (SARS-CoV) is highly pathogenic in humans, with a death rate near 10%. This high pathogenicity suggests that SARS-CoV has developed mechanisms to overcome the host innate immune response. It has now been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key(More)
We have rescued influenza A virus by transfection of 12 plasmids into Vero cells. The eight individual negative-sense genomic viral RNAs were transcribed from plasmids containing human RNA polymerase I promoter and hepatitis delta virus ribozyme sequences. The three influenza virus polymerase proteins and the nucleoprotein were expressed from protein(More)
The proapoptotic PB1-F2 protein of influenza A viruses has been shown to contribute to pathogenesis in the mouse model. Expression of full-length PB1-F2 increases the pathogenesis of the influenza A virus, causing weight loss, slower viral clearance, and increased viral titers in the lungs. After comparing viruses from the Hong Kong 1997 H5N1 outbreak, one(More)