Learn More
Spotting ignition by lofted firebrands is a significant mechanism of fire spread, as observed in many largescale fires. The role of firebrands in fire propagation and the important parameters involved in spot fire development are studied. Historical large-scale fires, including wind-driven urban and wildland conflagrations and post-earthquake fires are(More)
Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such rectification ratios, which are partially validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal(More)
A widely accepted consensus on entrainment models for large jives in compartments does not yet exist. To obtain further information on such entrainment rates, 20 full-scale, near-field experiments were condticted. Near-field entrainment occurs when hot layer interface heights are beneath the burner mean flame height so that cold layer entrainment occurs(More)
Firebrand transport is studied for disc and cylindrical firebrands by modelling their trajectories with a coupled-physics fire model, HIGRAD/FIRETEC. Through HIGRAD/FIRETEC simulations, the size of possible firebrands and travelled distances are analysed to assess spot ignition hazard. Trajectories modelled with and without the assumption that the(More)
  • 1