Learn More
The transport of protons across membranes is an important process in cellular bioenergetics. The light-driven proton pump bacteriorhodopsin is the best-characterized protein providing this function. Photon energy is absorbed by the chromophore retinal, covalently bound to Lys 216 via a protonated Schiff base. The light-induced all-trans to 13-cis(More)
The infrared stretching bands of carboxymyoglobin (MbCO) and the rebinding of CO to Mb after photodissociation have been studied in the temperature range 10-300 K in a variety of solvents. Four stretching bands imply that MbCO can exist in four substates, A0-A3. The temperature dependences of the intensities of the four bands yield the relative binding(More)
Myoglobin, a simppe dioxygen-storage protein, is a good laboratory for the investigation of the connection between protein structure, dynamics, and function. Fourier-transform infrared spectroscopy on carbon-monoxymyoglobin (MbCO) shows three major CO bands. These bands are excellent probes for the investigation of the structure-function relationship. They(More)
  • P Ormos
  • 1991
Infrared spectral changes in bacteriorhodopsin (bR) were followed during the slow decay of the M intermediate in the temperature region 240-260 K. The decay of the M form is characterized by the disappearance of the ethylenic bands and the bands indicating the reprotonation of the Schiff base. The route of Schiff-base reprotonation completely changes(More)
Photopolymerisation by scanning a focused laser beam is a powerful method to build structures of arbitrary complexity with submicrometer resolution. We introduce parallel photopolymerisation to enhance the efficiency. Instead of multidimensional scanning of a single focus, the structure is generated simultaneously with diffractive patterns. We used fixed(More)
We present a method that offers the possibility to directly apply and measure torque on particles in an optical trap. It can be used to rotationally manipulate biopolymers attached to appropriate particles. A flat object is trapped and oriented in the focus of a linearly polarized laser light. The direction and power of the orientational trap are controlled(More)
Previous C13-NMR studies showed that two of the four internal aspartic acid residues (Asp-96 and Asp-115) of bacteriorhodopsin (bR) are protonated up to pH = 10, but no accurate pKa of these residues has been determined. In this work, infrared spectroscopy with the attenuated total reflection technique was used to characterize pH-dependent structural(More)
This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhere in the sample at any orientation using optical traps. One(More)
Fourier transform infrared spectroscopy of the CO stretch bands in carbonmonoxymyoglobin (MbCO) reveals three major bands implying that MbCO exists in three major substates, A0, A1, and A3. After photolysis at low temperatures the CO is in the heme pocket, and the resulting CO stretch bands represent the B substates. Photoselection experiments determine the(More)
The light-driven proton pump bacteriorhodopsin (bR) was functionally expressed in Xenopus laevis oocytes and in HEK-293 cells. The latter expression system allowed high time resolution of light-induced current signals. A detailed voltage clamp and patch clamp study was performed to investigate the DeltapH versus Deltapsi dependence of the pump current. The(More)