Learn More
The trypsin/chymotrypsin inhibitors from winter pea seeds (PsTI) are members of the Bowman-Birk protease inhibitor (BBPI) family. The crystal structure of the isoform PsTI-IVb was determined by molecular replacement at 2.7 A resolution using the X-ray co-ordinates of the soybean inhibitor as a search model. The inhibitor crystallized with a nearly perfect(More)
Understanding molecular recognition on a structural basis is an objective with broad academic and applied significance. In the complexes of serine proteases and their proteinaceous inhibitors, recognition is governed mainly by residue P1 in accord with primary serine protease specificity. The bifunctional soybean Bowman-Birk inhibitor (sBBI) should,(More)
A gene coding for a Bowman-Birk-type proteinase inhibitor was synthesized chemically, cloned and expressed in Escherichia coli as a fusion protein with a beta-galactosidase fragment. The corresponding mutant inhibitor, carrying a P1 = Arg16 instead of Lys and an Ile27 instead of Met was obtained after cyanogen bromide cleavage, refolding and affinity(More)
The Bowman-Birk inhibitor from soybean is a small protein that contains a binary arrangement of trypsin-reactive and chymotrypsin-reactive subdomains. In this report, the crystal structure of this anticarcinogenic protein has been determined to 0.28-nm resolution by molecular replacement from crystals grown at neutral pH. The crystal structure differs from(More)
The principal objective of this work was to distinguish between kinetic and thermodynamic reaction control in protein folding. The deleterious effects of a specific mutation on spontaneous refolding competence were analyzed for this purpose. A Bowman-Birk-type proteinase inhibitor of trypsin and chymotrypsin was selected as a double-headed model protein to(More)
The hydrolysis of the soybean Bowman-Birk inhibitor in the presence of catalytic amounts of bovine trypsin and the formation of the non-covalent enzyme-inhibitor complex with an equimolar amount of enzyme are monitored by means of high-performance capillary electrophoresis (HPCE). The inhibitor is cleaved in the trypsin-reactive and more slowly in the(More)