Learn More
Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on(More)
To the Editor: Neuroscientists measure the tree-like structures of neurons in order to better understand how neural circuits are constructed and how neural information is processed. In 1953, Donald Sholl published his well-known technique for quantitative analysis of the complex arbors of dendrites and axons1, but conventional methods still require(More)
Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs(More)
Short-term plasticity (STP) denotes changes in synaptic strength that last up to tens of seconds. It is generally thought that STP impacts information transfer across synaptic connections and may thereby provide neurons with, for example, the ability to detect input coherence, to maintain stability and to promote synchronization. STP is due to a combination(More)
Accurate 3D reconstruction of neurons is vital for applications linking anatomy and physiology. Reconstructions are typically created using Neurolucida after biocytin histology (BH). An alternative inexpensive and fast method is to use freeware such as Neuromantic to reconstruct from fluorescence imaging (FI) stacks acquired using 2-photon laser-scanning(More)
Neuroscientists spent decades debating whether synaptic plasticity was presynaptically or postsynaptically expressed. It was eventually concluded that plasticity depends on many factors, including cell type. More recently, it has become increasingly clear that plasticity is regulated at an even finer grained level; it is specific to the synapse type, a(More)
A classical in vitro model for investigation of information storage in the brain is based on the acute hippocampal slice. Here, repeated high-frequency stimulation of excitatory Schaeffer collaterals making synapses onto pyramidal cells in the hippocampal CA1 region leads to strengthening of evoked field-recording responses-long-term potentiation (LTP)-in(More)
Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the(More)
This protocol provides a method for quadruple whole-cell recording to study synaptic plasticity of neocortical connections, with a special focus on spike-timing-dependent plasticity (STDP). It also describes how to morphologically identify recorded cells from two-photon laser-scanning microscopy (2PLSM) stacks.