Learn More
Multiple gene defects cause Batten disease. Accelerated apoptosis accounts for neurodegeneration in the late infantile and juvenile forms that are due to defects in the CLN3 and CLN2 genes. Extensive neuronal death is seen in CLN2- and CLN3-deficient human brain as well as in CLN6-deficient sheep brain and retina. When neurons in late infantile and juvenile(More)
The standard model of physics is built on the fundamental constants of nature, but it does not provide an explanation for their values, nor require their constancy over space and time. Here we set a limit on a possible cosmological variation of the proton-to-electron mass ratio μ by comparing transitions in methanol observed in the early universe with those(More)
Juvenile Batten disease is a neurodegenerative disease caused by accelerated apoptotic death of photoreceptors and neurons attributable to defects in the CLN3 gene. CLN3 is antiapoptotic when overexpressed in NT2 neuronal precursor cells. CLN3 negatively modulates endogenous ceramide levels in NT2 cells and acts upstream of ceramide generation. Because(More)
The pyrimidine de novo biosynthesis pathway has been characterized for a number of organisms. The general pathway consists of six enzymatic steps. In the characterization of the pyrimidine pathway of Lactococcus lactis, two different pyrD genes encoding dihydroorotate dehydrogenase were isolated. The nucleotide sequences of the two genes, pyrDa and pyrDb,(More)
We report a novel approach for determining the sign of permanent dipole moments, using nitric oxide [NO(v=0)] as an example. State-selected NO (j=|m|=|Omega=1/2) molecules are focused using a hexapole and oriented in a strong dc electric field. The angular distributions of ionic fragments resulting from extreme ultraviolet single-photon and multiphoton(More)
The 6.7 and 12.2 GHz masers, corresponding to the 5(1) → 6(0)A+ and 2(0) → 3(-1)E transitions in methanol (CH3OH), respectively, are among the brightest radio objects in the sky. We present calculations for the sensitivity of these and other transitions in the ground state of methanol to a variation of the proton-to-electron mass ratio. We show that the(More)
A limit on a possible cosmological variation of the proton-to-electron mass ratio μ is derived from methanol (CH3OH) absorption lines in the benchmark PKS1830-211 lensing galaxy at redshift z=0.89 observed with the Effelsberg 100-m radio telescope, the Institute de Radio Astronomie Millimétrique 30-m telescope, and the Atacama Large Millimeter/submillimeter(More)
For the first time, unidirectional rate constants of ethanol diffusion through the lipid membrane of a microorganism, the bacterium Zymomonas mobilis, were determined, thus replacing indirect inferences with direct kinetic data. The rate constants k1 (in to out) were 6.8 +/- 0.4s(-1) at 29 degrees C and 2.7 +/- 0.3s(-1) at 20 degrees C. They were determined(More)