Learn More
Alzheimer's disease (AD) is a complex, neurodegenerative disease characterized by the impairment of cognitive function in elderly individuals. In a recent global gene expression study of APP transgenic mice, we found elevated expression of mitochondrial genes, which we hypothesize represents a compensatory response because of mitochondrial oxidative damage(More)
Recent studies of postmortem brains from Alzheimer's disease (AD) patients and transgenic mouse models of AD suggest that oxidative damage, induced by amyloid beta (Abeta), is associated with mitochondria early in AD progression. Abeta and amyloid-precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded(More)
The purpose of our study was to better understand the relationship between mitochondrial structural proteins, particularly dynamin-related protein 1 (Drp1) and amyloid beta (Aβ) in the progression of Alzheimer's disease (AD). Using qRT-PCR and immunoblotting analyses, we measured mRNA and protein levels of mitochondrial structural genes in the frontal(More)
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the impairment of cognitive functions and by beta amyloid (Abeta) plaques in the cerebral cortex and the hippocampus. Our objective was to determine genes that are critical for cellular changes in AD progression, with particular emphasis on changes early in disease(More)
The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntington's disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2),(More)
This review summarizes recent findings that suggest a causal connection between mitochondrial abnormalities and sporadic Alzheimer's disease (AD). Genetic causes of AD are known only for a small proportion of familial AD patients, but for a majority of sporadic AD patients, genetic causal factors are still unknown. Currently, there are no early detectable(More)
Alzheimer's disease (AD) is a late-onset dementia that is characterized by the loss of memory and an impairment of multiple cognitive functions. Advancements in molecular, cellular, and animal model studies have revealed that the formation of amyloid beta (Abeta) and other derivatives of the amyloid precursor protein (APP) are key factors in cellular(More)
The purpose of this study was to investigate the link between mutant huntingtin (Htt) and neuronal damage in relation to mitochondria in Huntington's disease (HD). In an earlier study, we determined the relationship between mutant Htt and mitochondrial dynamics/synaptic viability in HD patients. We found mitochondrial loss, abnormal mitochondrial dynamics(More)
Although multiple sclerosis (MS) is an inflammatory demyelinating disease, there can be substantial axonal injury and loss. We therefore hypothesized that adaptive cortical changes may contribute to limiting functional impairment, particularly in the early stages of the disease. To test our hypothesis, we used functional magnetic resonance imaging (MRI) to(More)
Mitochondria are key cytoplasmic organelles, responsible for generating cellular energy, regulating intracellular calcium levels, altering the reduction-oxidation potential of cells, and regulating cell death. Increasing evidence suggests that mitochondria play a central role in aging and in neurodegenerative diseases, such as Alzheimer's disease,(More)