P Graham Cranston

Learn More
The absence of tools for mapping the forces that drive morphogenetic movements in embryos has impeded our understanding of animal development. Here we describe a unique approach, video force microscopy (VFM), that allows detailed, dynamic force maps to be produced from time-lapse images. The forces at work in an embryo are considered to be decomposed into(More)
The orthocladiine Chironomidae genus Stictocladius Edwards was described originally from South America. Although recognised subsequently as present also in Australia and New Zealand, the true diversity in the Neotropics has remained unclear. After more than a decade of collections of both isolated adults and aquatic immature stages, we can recognise several(More)
Although cell-level mechanical forces are crucial to tissue self-organization in contexts ranging from embryo development to cancer metastases to regenerative engineering, the absence of methods to map them over time has been a major obstacle to new understanding. Here, we present a technique for constructing detailed, dynamic maps of the forces driving(More)
We use a spatial light modulator (SLM) to diffract a single UV laser pulse to ablate multiple points on a Drosophila embryo. This system dynamically generates a phase hologram for ablating a user-defined pattern fast enough to be used with living, and thus moving, tissue. We demonstrate the ability of this single-pulse multi-point system to perform two(More)
  • 1