Learn More
Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a(More)
Plants, animals, and several branches of unicellular eukaryotes use programmed cell death (PCD) for defense or developmental mechanisms. This argues for a common ancestral apoptotic system in eukaryotes. However, at the molecular level, very few regulatory proteins or protein domains have been identified as conserved across all eukaryotic PCD forms. A very(More)
Tracheary elements (TEs) are cells in the xylem that are highly specialized for transporting water and solutes up the plant. TEs undergo a very well-defined process of differentiation that involves specification, enlargement, patterned cell wall deposition, programmed cell death and cell wall removal. This process is coordinated such that adjacent TEs are(More)
Programmed cell death or apoptosis is a process in which unwanted cells are eliminated during growth and development. In mammals, several genes have been identified whose products are necessary to prevent entry into the apoptotic process. We have isolated a clone from an Arabidopsis thaliana cDNA library whose predicted translation product shows highly(More)
Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis(More)
Programmed cell death (PCD) is a genetically controlled cell death that is regulated during development and activated in response to environmental stresses or pathogen infection. The degree of conservation of PCD across kingdoms and phylum is not yet clear; however, whereas caspases are proteases that act as key components of animal apoptosis, plants have(More)
The extent of conservation in the programmed cell death pathways that are activated in species belonging to different kingdoms is not clear. Caspases are key components of animal apoptosis; caspase activities are detected in both animal and plant cells. Yet, while animals have caspase genes, plants do not have orthologous sequences in their genomes. It is(More)
High ozone concentration generates oxidative stress in plants. To investigate the detailed transcriptional regulation of Arabidopsis thaliana genes encoding antioxidant enzymes upon ozone stress, we performed a microarray analysis using Affymetrix GeneChip technology. Our transcription profiling revealed a differential expression equal or greater than(More)
With a view to studying programmed cell death in plants at the molecular level, we report here for the first time that apoptotic-like changes are induced by UV radiation in plant nuclei. In Arabidopsis thaliana seedlings a UV-C dose of 10-50 kJ/m2 induces an oligonucleosomal DNA fragmentation which is reminiscent of the apoptotic DNA ladder described in(More)
Plant cells, like cells from other kingdoms, have the ability to self-destruct in a genetically controlled manner. This process is defined as Programmed cell death (PCD). PCD can be triggered by various stimuli in plants including by endoplasmic reticulum (ER) stress. Research in the past two decades discovered that disruption of protein homeostasis in the(More)