Learn More
Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and(More)
Chlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization,(More)
Listeria monocytogenes is a bacterial pathogen causing severe food-borne infections in humans and animals. It can sense and adapt to a variety of harsh microenvironments outside as well as inside the host. Once ingested by a mammalian host, the bacterial pathogen reaches the intestinal lumen, where it encounters bile salts which, in addition to their role(More)
Actin polymerization, the main driving force for cell locomotion, is also used by the bacteria Listeria and Shigella and vaccinia virus for intracellular and intercellular movements. Seminal studies have shown the key function of the Arp2/3 complex in nucleating actin and generating a branched array of actin filaments during membrane extension and pathogen(More)
On the basis of the recently determined genome sequence of Listeria monocytogenes, we performed a global analysis of the surface-protein-encoding genes. Only proteins displaying a signal peptide were taken into account. Forty-one genes encoding LPXTG proteins, including the previously known internalin gene family, were detected. Several genes encoding(More)
During infection of their hosts, Gram-positive bacteria express surface proteins that serve multiple biological functions. Surface proteins harbouring a C-terminal sorting signal with an LPXTG motif are covalently linked to the cell wall peptidoglycan by a transamidase named sortase. Two genes encoding putative sortases, termed srtA and srtB, were(More)
Chlamydiae are Gram-negative, obligate intracellular pathogens that replicate within a membrane-bounded compartment termed an inclusion. Throughout their development, they actively modify the eukaryotic environment. The type III secretion (TTS) system is the main process by which the bacteria translocate effector proteins into the inclusion membrane and the(More)
Actin-based propulsion of the bacteria Listeria and Shigella mimics the forward movement of the leading edge of motile cells. While Shigella harnesses the eukaryotic protein N-WASp to stimulate actin polymerization and filament branching through Arp2/3 complex, the Listeria surface protein ActA directly activates Arp2/3 complex by an unknown mechanism. Here(More)
Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed(More)
Listeria monocytogenes is an opportunistic food-borne human and animal pathogen. Several surface proteins expressed by this intracellular pathogen are critical for the infectious process. By in silico analysis we compared the surface protein repertories of L. monocytogenes and of the non-pathogenic species Listeria innocua and identified a gene encoding a(More)