• Citations Per Year
Learn More
Phase imaging with a high-resolution wavefront sensor is considered. This is based on a quadriwave lateral shearing interferometer mounted on a non-modified transmission white-light microscope. The measurement technology is explained both in the scope of wave optics and geometrical optics in order to discuss its implementation on a conventional microscope.(More)
We introduce an optical microscopy technique aimed at characterizing the heat generation arising from nanostructures, in a comprehensive and quantitative manner. Namely, the technique permits (i) mapping the temperature distribution around the source of heat, (ii) mapping the heat power density delivered by the source, and (iii) retrieving the absolute(More)
The inclusion behavior of natural cyclodextrins (CDs) and polymers based on natural cyclodextrins (CD-polymer), in solution and in solid-state, was studied towards a poorly water-soluble anti-helminthic drug, albendazole (ABZ), chemically methyl[5-(propylthio)-1-H-benzimidazol-2yl]carbamate. Drug-cyclodextrin solid systems were prepared by freeze-drying.(More)
Tomographic diffractive microscopy is a recent imaging technique that reconstructs quantitatively the three-dimensional permittivity map of a sample with a resolution better than that of conventional wide-field microscopy. Its main drawbacks lie in the complexity of the setup and in the slowness of the image recording as both the amplitude and the phase of(More)
We present a quadriwave lateral shearing interferometer used as a wavefront sensor and mounted on a commercial non-modified transmission white-light microscope as a quantitative phase imaging technique. The setup is designed to simultaneously make measurements with both quantitative transmission phase and fluorescence modes: phase enables enhanced(More)
A generalized product-of-convolution model for simulation of quantitative phase microscopy of thick heterogeneous specimen under tilted plane-wave illumination is presented. Actual simulations are checked against a much more time-consuming commercial finite-difference time-domain method. Then modeled data are compared with experimental measurements that(More)
We describe the use of spatially incoherent illumination to make quantitative phase imaging of a semi-transparent sample, even out of the paraxial approximation. The image volume electromagnetic field is collected by scanning the image planes with a quadriwave lateral shearing interferometer, while the sample is spatially incoherently illuminated. In(More)
Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving(More)
We present a full-field technique that allows label-free cytoskeletal network imaging inside living cells. This noninvasive technique allows monitoring of the cytoskeleton dynamics as well as interactions between the latter and organelles on any timescale. It is based on high-resolution quantitative phase imaging (modified Quadriwave lateral shearing(More)