Learn More
Phase transitions to quantum condensed phases--such as Bose-Einstein condensation (BEC), superfluidity, and superconductivity--have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has, for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin. Much effort has(More)
The La 1−x Sr x MnO 3 system with 0.2 x 0.4 has traditionally been modelled with a " double exchange " Hamiltonian, in which it is assumed that the only relevant physics is the tendency of carrier hopping to line up neighboring spins. We present a solution of the double exchange model, show it is incompatible with many aspects of the resistivity data, and(More)
Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a(More)
We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the(More)
We propose that the exciton condensate may form in a well-controlled way in appropriately arranged semiconductor quantum well structures. The mean-field theory of Keldysh and Kopaev, exact in both the high density and the low density limits, is solved numerically to illustrate our proposal. The electron-hole pairing gap and the excitation spectrum of the(More)
We investigate the thermodynamics and signatures of a polariton condensate over a range of densities, using a model of microcavity polaritons with internal structure. We determine a phase diagram for this system including fluctuation corrections to the mean-field theory. At low densities the condensation temperature T c behaves like that for point bosons.(More)
We study spontaneous quantum coherence in an out of an equilibrium system, coupled to multiple baths describing pumping and decay. For a range of parameters describing coupling to, and occupation of the baths, a stable steady-state condensed solution exists. The presence of pumping and decay significantly modifies the spectra of phase fluctuations, leading(More)