P. B. Littlewood

Learn More
Phase transitions to quantum condensed phases--such as Bose-Einstein condensation (BEC), superfluidity, and superconductivity--have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has, for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin. Much effort has(More)
We propose that the exciton condensate may form in a well-controlled way in appropriately arranged semiconductor quantum well structures. The mean-field theory of Keldysh and Kopaev, exact in both the high density and the low density limits, is solved numerically to illustrate our proposal. The electron-hole pairing gap and the excitation spectrum of the(More)
We investigate the electronic, magnetic, and orbital properties of La0.5Ca0.5MnO3 perovskite by means of an ab initio electronic structure calculation within the Hartree-Fock approximation. Using the experimental crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)]], we find a charge-ordering stripelike ground state. The periodicity(More)
Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a(More)
The phenomenon of colossal magnetoresistance in manganites is generally agreed to be a result of competition between crystal phases with different electronic, magnetic and structural order; a competition which can be strong enough to cause phase separation between metallic ferromagnetic and insulating charge-modulated states. Nevertheless, closer inspection(More)
We observe and analyze strongly nonlinear photoluminescence kinetics of indirect excitons in GaAs/AlGaAs coupled quantum wells at low bath temperatures, > or = 50 mK. The long recombination lifetime of indirect excitons promotes accumulation of these Bose particles in the lowest energy states and allows the photoexcited excitons to cool down to temperatures(More)
Modulations in manganites attributed to stripes of charge/orbital/spin order are thought to result from strong electron-lattice interactions that lock the superlattice and parent lattice periodicities. Surprisingly in La1-xCaxMnO3 (x>0.5,90 K), convergent beam (3.6 nm spot) electron diffraction patterns rule out charge stacking faults and indicate a(More)
Stripe and chequerboard phases appear in many metal oxide compounds, and are thought to be linked to exotic behaviour such as high-temperature superconductivity and colossal magnetoresistance. It is therefore extremely important to understand the fundamental nature of such phases. The so-called stripe phase of the manganites has long been interpreted as the(More)