P A Wentworth

Learn More
Human papillomavirus type 16 (HPV16) is strongly associated with cervical carcinogenesis. The HPV16 E6 and E7 oncoproteins are constitutively expressed in the majority of cervical tumor cells and are, therefore, attractive targets for CTL-mediated immunotherapy. In mice, the outgrowth of a lethal dose of HPV16-induced tumor cells has been prevented by(More)
An HLA-A3-like supertype (minimally comprised of products from the HLA class I alleles A3, A11, A31, A*3301, and A*6801) has been defined on the basis of (a) structural similarities in the antigen-binding groove, (b) shared main anchor peptide-binding motifs, (c) the identification of peptides cross-reacting with most or all of these molecules, and (d) the(More)
We recently described human leukocyte antigen (HLA) A2, A3 and B7 supertypes, characterized by largely overlapping peptide-binding specificities and represented in a high percentage of different populations. Here, we identified 17 Plasmodium falciparum peptides capable of binding these supertypes and assessed antigenicity in both vaccinated and naturally(More)
Cytotoxic T lymphocytes (CTLs) recognize peptide antigens associated with cell surface major histocompatibility complex (MHC) molecules. The identification of tumor cell-derived peptides capable of eliciting anti-tumor CTL responses would enable the design of antigen-specific immunotherapies. Our strategy to identify such potentially therapeutic peptides(More)
Recent data demonstrate that HLA class I alleles can be grouped into superfamilies based on similarities of their peptide-binding motifs. In this study, we have tested the immunogenicity and antigenicity of peptides capable of degenerate binding to multiple HLA class I molecules of the A3-like superfamily. The assay systems utilized included both primary in(More)
Virus-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of human immunodeficiency virus type 1 (HIV-1) infection and will play an important part in therapeutic and prophylactic HIV-1 vaccines. The identification of virus-specific epitopes that are efficiently recognized by CTL is the first step in the development of future(More)
We have focused on conserved regions of the hepatitis C Virus (HCV) genome to identify viral peptides that contain HLA class I binding motifs and bind with high affinity to the corresponding purified HLA molecules. Accordingly, we have identified 31 candidate epitopes in the HCV that have the potential to be recognized by either HLA-A1, A2.1-, A3, A11- or(More)
A protocol for in vitro induction of primary, antigen-specific CTL from human peripheral blood mononuclear cells (PBMCs) was developed. Antigen presenting cells (APCs) consisted of Staphylococcus aureus Cowan-I (SAC-I) activated PBMCs treated with a citrate-phosphate buffer at pH 3 to release endogenous peptides bound to surface MHC. This treatment resulted(More)
Many human leukemias are characterized by chromosomal translocations yielding hybrid RNAs capable of encoding fusion chimeric proteins. The unique amino acid sequences found in these oncogenic fusion proteins represent true tumor-specific antigens that are potentially immunogenic. Although these leukemia-specific fusion proteins have an intracellular(More)
Antiviral cytotoxic T lymphocytes (CTL) may play a role in clearance of hepatitis C virus (HCV)-infected cells and thereby cause hepatocellular injury during acute and chronic HCV infection. The aim of this study was to identify HLA-A2.1-restricted HCV T-cell epitopes and to evaluate whether anti-HCV-specific CTL are present during chronic hepatitis C.(More)