P . A . S . Cruickshank

Learn More
We describe a quasioptical 94 GHz kW pulsed electron paramagnetic resonance spectrometer featuring pi/2 pulses as short as 5 ns and an instantaneous bandwidth of 1 GHz in nonresonant sample holders operating in induction mode and at low temperatures. Low power pulses can be as short as 200 ps and kilowatt pulses as short as 1.5 ns with timing resolution of(More)
Structural differences in dihydrofolate reductases from different species have been exploited to develop specific inhibitory molecules, such as chemotherapeutic agents, antibiotics or antihelminthics, that show species specificity or selectivity. As dihydrofolate reductase (DHFR) is a crucial enzyme for the synthesis of purines, pyrimidines and some amino(More)
A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm(More)
In this communication we report initial results using high power pulsed techniques at 94 GHz to perform solid state Dynamic Nuclear Polarisation (DNP) on high volume samples. It is shown that excitation with short pulses, comparable to the pi/2 pulse length, at fast repetition rates can result in higher DNP enhancements relative to continuous wave (cw)(More)
A W-band corrugated horn incorporating a broadband vacuum window for use in a gyro-device as a quasioptical launcher has been designed, manufactured and experimentally measured. This horn, including a 3 disk vacuum window, converts a cylindrical TE11 mode into the free space TEM00 mode over the frequency band of 90–100 GHz with a reflection better than -30(More)
Force detected electron spin resonance (FDESR) detects the presence of unpaired electrons in a sample by measuring the change in force on a mechanical resonator as the magnetization of the sample is modulated under magnetic resonance conditions. The magnetization is coupled to the resonator via a magnetic field gradient. It has been used to both detect and(More)