Learn More
The amyloid proteins isolated from neuritic plaques and the cerebrovasculature of Alzheimer's disease are self-aggregating moieties termed A4 protein and beta-protein, respectively. A putative A4 amyloid precursor (herein termed A4(695] has been characterized by analysis of a human brain complementary DNA. We report here the sequence of a closely related(More)
A subset of nonsteroidal anti-inflammatory drugs (NSAIDs) has been shown to preferentially reduce the secretion of the highly amyloidogenic, 42-residue amyloid-beta peptide Abeta42. We found that Rho and its effector, Rho-associated kinase, preferentially regulated the amount of Abeta42 produced in vitro and that only those NSAIDs effective as Rho(More)
This study was undertaken to localize amyloid precursor protein (APP) and to determine how APP might be released and proteolyzed to yield the beta-amyloid protein deposits found in senile plaques in the brains of Alzheimer's disease patients. We found that antibodies to recombinantly expressed APP labeled many normal neurons and neurites. In addition,(More)
BACKGROUND Extracellular matrix proteins (ECMPs) of the basement membrane type, such as the heparan sulfate proteoglycan perlecan, laminin, entactin, collagen IV, and fibronectin are present in and have been implicated in the genesis of amyloids. As in many forms of amyloid, perlecan, laminin, collagen IV, and fibronectin are present in Alzheimer deposits.(More)
Lipoprotein lipase (LPL) is a key regulator of triglyceride clearance. Its coordinated regulation during feeding and fasting is critical for maintaining lipid homeostasis and energy supply. Angiopoietin-like (Angptl)3 and Angptl4 are secreted proteins that have been demonstrated to regulate triglyceride metabolism by inhibiting LPL. We have taken a targeted(More)
BACKGROUND In vivo amyloid formation apparently involves several extracellular matrix components that are usually found associated with basement membranes. These include laminin, heparan sulfate proteoglycan, collagen type IV, and entactin. These components have also been found in neuritic plaques. We have therefore been examining interactions between(More)
Senile plaques are polymorphous beta-amyloid protein deposits found in the brain in Alzheimer disease and normal aging. This beta-amyloid protein is derived from a larger precursor molecule of which neurons are the principal producers in brain. We found that amyloid precursor protein (APP)-immunoreactive neurites were involved in senile plaques and that(More)
High affinity interactions were studied between the basement membrane form of heparan sulfate proteoglycan (HSPG) and the 695-, 751-, and 770-amino acid Alzheimer amyloid precursor (AAP) proteins. Based on quantitative analyses of binding data, we identified single binding sites for the HSPG on AAP-695 (Kd = 9 x 10(-10) M), AAP-751 (Kd = 10 x 10(-9) M), and(More)
The authors have previously shown that amyloid precursor protein (APP) accumulates in neurites present in senile plaques of Alzheimer's disease (AD). In this ultrastructural immunocytochemical study, we describe the subcellular site of APP accumulation. Vibratome sections of glutaraldehyde-paraformaldehyde fixed hippocampi from five cases of AD were(More)
The kinetics of amyloid fibril formation by beta-amyloid peptide (Abeta) are typical of a nucleation-dependent polymerization mechanism. This type of mechanism suggests that the study of the interaction of Abeta with itself can provide some valuable insights into Alzheimer disease amyloidosis. Interaction of Abeta with itself was explored with the yeast(More)