Learn More
A family of proteins bearing novel N-acetylglucosamine residues has previously been found to be required to form functional nuclear pores. To begin to determine which of the proteins in this family are essential for pore function, antisera were raised to each of three members of the family, p62, p58, and p54. With these antisera, it was possible to deplete(More)
We use the Rosetta de novo structure prediction method to produce three-dimensional structure models for all Pfam-A sequence families with average length under 150 residues and no link to any protein of known structure. To estimate the reliability of the predictions, the method was calibrated on 131 proteins of known structure. For approximately 60% of the(More)
Interpreting genome sequences requires the functional analysis of thousands of predicted proteins, many of which are uncharacterized and without obvious homologs. To assess whether the roles of large sets of uncharacterized genes can be assigned by targeted application of a suite of technologies, we used four complementary protein-based methods to analyze a(More)
Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer(More)
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are(More)
  • 1