Learn More
BACKGROUND To date, several genome-scale network reconstructions have been used to describe the metabolism of the yeast Saccharomyces cerevisiae, each differing in scope and content. The recent community-driven reconstruction, while rigorously evidenced and well annotated, under-represented metabolite transport, lipid metabolism and other pathways, and was(More)
BACKGROUND Haploinsufficient (HI) genes are those for which a reduction in copy number in a diploid from two to one results in significantly reduced fitness. Haploinsufficiency is increasingly implicated in human disease, and so predicting this phenotype could provide insights into the genetic mechanisms behind many human diseases, including some cancers.(More)
Auxotrophic markers-mutations within genes encoding enzymes in pathways for the biosynthesis of metabolic building blocks, such as an amino acid or nucleotide, are used as selection markers in the vast majority of yeast genetics and genomics experiments 1-3. The nutritional deficiency caused by the mutation (auxotrophy) can be compensated by supplying the(More)
BACKGROUND To elucidate the biological processes affected by changes in growth rate and nutrient availability, we have performed a comprehensive analysis of the transcriptome, proteome and metabolome responses of chemostat cultures of the yeast, Saccharomyces cerevisiae, growing at a range of growth rates and in four different nutrient-limiting conditions.(More)
Control of growth rate is mediated by tight regulation mechanisms in all free-living organisms since long-term survival depends on adaptation to diverse environmental conditions. The yeast, Saccharomyces cerevisiae, when growing under nutrient-limited conditions, controls its growth rate via both nutrient-specific and nutrient-independent gene sets. At slow(More)
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a "cycle of knowledge" strategy, identifying the steps with most control over flux. Kinetic parameters of the(More)
BACKGROUND The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. RESULTS To answer this, we have constructed a chemical genomics(More)
BACKGROUND A microorganism is able to adapt to changes in its physicochemical or nutritional environment and this is crucial for its survival. The yeast, Saccharomyces cerevisiae, has developed mechanisms to respond to such environmental changes in a rapid and effective manner; such responses may demand a widespread re-programming of gene activity. The(More)
BACKGROUND New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput(More)
BACKGROUND The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important(More)