Learn More
Enhanced temporal and spatial variability in cardiac repolarization has been related to increased arrhythmic risk both clinically and experimentally. Causes and modulators of variability in repolarization and their implications in arrhythmogenesis are however not well understood. At the ionic level, the slow component of the delayed rectifier potassium(More)
OBJECTIVE In diabetes mellitus several cardiac electrophysiological parameters are known to be affected. In rodent experimental diabetes models changes in these parameters were reported, but no such data are available in other mammalian species including the dog. The present study was designed to analyse the effects of experimental type 1 diabetes on(More)
Concentration-dependent effects of bimoclomol, a novel heat shock protein (HSP) coinducer, were studied on the parameters of action potential and transmembrane ionic currents in enzymatically dispersed canine ventricular cardiomyocytes using conventional microelectrode and whole cell voltage clamp techniques. Bimoclomol (10-100 microM) decreased the maximum(More)
Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of(More)
Distinct differences exist in action potentials and ionic currents between rabbit, rat, and guinea pig ventricular myocytes. Data obtained at room temperature indicate that about half of the rabbit myocytes show prominent phase 1 repolarization and transient outward current. Action potentials in guinea pig ventricular myocytes resemble those from rabbit(More)
Norfluoxetine is the most important active metabolite of the widely used antidepressant fluoxetine but little is known about its pharmacological actions. In this study the anticonvulsant actions of norfluoxetine and fluoxetine were studied and compared to those of phenytoin and clonazepam in pentylenetetrazol-induced mouse epilepsy models. Pretreatment with(More)
1. The electrophysiological effects of veratridine, cevadine and aconitine (10(-8)-2 x 10(-4), 2 x 10(-7)-2 x 10(-6) and 2 x 10(-6)-10(-4) mol/l, respectively) were compared on frog muscle membrane using conventional microelectrodes. 2. Veratridine and aconitine were equally effective in depolarizing the resting membrane with the threshold concentration of(More)
AIMS Class III antiarrhythmic agents exhibit reverse rate-dependent lengthening of the action potential duration (APD). In spite of the several theories developed so far to explain this reverse rate dependency (RRD), its mechanism has not yet been clarified. The aim of the present work was to further elucidate the mechanisms responsible for reverse(More)
Although beat-to-beat variability (short-term variability, SV) of action potential duration (APD) is considered as a predictor of imminent cardiac arrhythmias, the underlying mechanisms are still not clear. In the present study, therefore, we aimed to determine the role of the major cardiac ion currents, APD, stimulation frequency, and changes in the(More)
The inward rectifier K+ current (IK1) plays an important role in terminal repolarization and stabilization of the resting potential in cardiac cells. Although IK1 was shown to be sensitive to changes in intracellular Ca2+ concentration ([Ca2+]i), the nature of this Ca2+ sensitivity—in spite of its deep influence on action potential morphology—is(More)