Péter Kaposvári

Learn More
Humans are sensitive to statistical regularities in their visual environment, but the nature of the underlying neural statistical learning signals still remains to be clarified. As in human behavioral and neuroimaging studies of statistical learning, we exposed rhesus monkeys to a continuous stream of images, presented without interstimulus interval or(More)
Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams(More)
Stimulus reduction is an effective way to study visual performance. Cues such as surface characteristics, colour and inner lines can be removed from stimuli, revealing how the change affects recognition and neural processing. An extreme reduction is the removal of the very stimulus, defining it with illusory lines. Perceived boundaries without physical(More)
Inconsistent information from different modalities can be delusive for perception. This phenomenon can be observed with simultaneously presented inconsistent numbers of brief flashes and short tones. The conflict of bimodal information is reflected in double flash or fission, and flash fusion illusions, respectively. The temporal resolution of the vision(More)
Visual perception declines with age. Perceptual deficits may originate not only in the optical system serving vision but also in the neural machinery processing visual information. Since homologies between monkey and human vision permit extrapolation from monkeys to humans, data from young, middle aged and old monkeys were analyzed to show age-related(More)
We performed a systematic study to check whether neurons in the area TE (the anterior part of inferotemporal cortex) in rhesus monkey, regarded as the last stage of the ventral visual pathway, could be modulated by auditory stimuli. Two fixating rhesus monkeys were presented with visual, auditory or combined audiovisual stimuli while neuronal responses were(More)
Animals and humans learn statistical regularities that are embedded in sequences of stimuli. The neural mechanisms of such statistical learning are still poorly understood. Previous work in macaque inferior temporal (IT) cortex demonstrated suppressed spiking activity to visual images of a sequence in which the stimulus order was defined by transitional(More)
  • 1