Ozgur Ozsun

  • Citations Per Year
Learn More
This study describes a non-invasive method for mapping interstitial fluid pressure within hydrogel-based microscale tissues. The method is based on embedding (or forming) a tissue within a silicone (PDMS) microfluidic device, and measuring the extremely slight displacement (<1 μm) of the PDMS optically when the device is pressurized under static and flow(More)
Direct and non-invasive measurement of the pressure distribution in test sections of a micro-channel is a challenging, if not an impossible, task. Here, we present an analytical method for extracting the pressure distribution in a deformable microchannel under flow. Our method is based on a measurement of the channel deflection profile as a function of(More)
We have fabricated and characterized a novel superhydrophobic system, a meshlike porous superhydrophobic membrane with solid area fraction Φ(s), which can maintain intimate contact with outside air and water reservoirs simultaneously. Oscillatory hydrodynamic measurements on porous superhydrophobic membranes as a function of Φ(s) reveal surprising effects.(More)
In order to understand how interstitial fluid pressure and flow affect cell behavior, many studies use microfluidic approaches to apply externally controlled pressures to the boundary of a cell-containing gel. It is generally assumed that the resulting interstitial pressure distribution quickly reaches a steady-state, but this assumption has not been(More)
  • 1